Wrong prediction results from feedforwardnet
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Neelabh Jyoti Saharia
el 30 de Sept. de 2021
Respondida: Anshika Chaurasia
el 4 de Oct. de 2021
I made a simple feedforward net as follows:
mynet = feedforwardnet(5)
mynet.layers{1}.transferFcn = 'poslin'; % one hidden layer(5 neurons) with poslin = ReLU activation function
mynet.layers{2}.transferFcn = 'purelin'; % last layer has simply linear activation function
I want to train this Neural Network to learn a non-linear function that looks like this. So basically it is a regression problem.
So we have two inputs(u1, u2), and one output(y).
After training I get the weights and biases by:
W1 = mynet.IW{1,1}; b1 = mynet.b{1}; W2 = mynet.LW{2,1}; b2 = mynet.b{2}
Now to estimate the output, we can simply use:
inputs = [3;2] % u1 = 3, u2 = 2
y_predicted = mynet(inputs])
Y_predicted = 2.9155 % the prediction given by the NN
Fine, the prediction is good.
But when I manually checked it by forward propagation, I got different result:
Z1 = W1*[3; 2] + b1;
A1 = poslin(Z1); % applying ReLU activation function
Z2 = W2*A1 + b2;
A2 = Z2; % linear activation function
y_predicted = A2;
y_predicted = 2.2549
Should not both be the same? Am I missing something?
0 comentarios
Respuesta aceptada
Anshika Chaurasia
el 4 de Oct. de 2021
Hi,
Refer to the following MATLAB Answers to resolve your issue:
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!