The way to solve a singular matrix

95 visualizaciones (últimos 30 días)
Amad-Adeen Baiuk
Amad-Adeen Baiuk el 22 de Ag. de 2014
Comentada: Aditya Agrawal el 8 de Dic. de 2020
Hi
There is any one know how the method to decompose the singular square matrix using Matlab. Someone told me the Matlab have something like a ready Forthran subroutine. Does anyone know how to use it in Matlab?

Respuestas (3)

Mikhail
Mikhail el 22 de Ag. de 2014
  1 comentario
Amad-Adeen Baiuk
Amad-Adeen Baiuk el 23 de Ag. de 2014
thanks Mikhail. but how can apply the svd to find the inverse of square singular matrix in order to solve the set of linear system.

Iniciar sesión para comentar.


John D'Errico
John D'Errico el 23 de Ag. de 2014
Editada: John D'Errico el 23 de Ag. de 2014
help pinv
Not much more to say, since you give very little info to help you on. Note that computing the inverse of a matrix is almost never recommended. The backslash operator is a better choice always than inv. But pinv is a good tool for this purpose, when backslash (and surely also inv) will fail.
A = ones(2);
A\[1;1]
Warning: Matrix is singular to working precision.
ans =
NaN
NaN
inv(A)*[1;1]
Warning: Matrix is singular to working precision.
ans =
Inf
Inf
pinv(A)*[1;1]
ans =
0.5
0.5
  2 comentarios
Einat Shoval
Einat Shoval el 24 de Dic. de 2017
Thank you so much for this!! Was stuck on this for two days now until I found your answer :)
Aditya Agrawal
Aditya Agrawal el 8 de Dic. de 2020
Thankyou so much! I had the same issue and your solution works!

Iniciar sesión para comentar.


Jess
Jess el 22 de Mzo. de 2016
% Goal: solve A*x == b for x
% Set up some matrix A (I used a sparse matrix) -- do yourself
% Set up the vector b -- do yourself
% Perform SVD on A
[U,S,V] = svd(A);
% A == U*S*V' % Not needed, but you can check it yourself to confirm
% Calc number of singular values
s = diag(S); % vector of singular values
tolerance = max(size(A))*eps(max(s));
p = sum(s>tolerance);
% Define spaces
Up = U(:,1:p);
%U0 = U(:,p+1:Nx);
Vp = V(:,1:p);
%V0 = V(:,p+1:Nx);
%Sp = spdiags( s(1:p), 0, p, p );
SpInv = spdiags( 1.0./s(1:p), 0, p, p );
% Calc AInv such that x = AInv * b
AInv = Vp * SpInv * Up';
x = AInv * b; % DONE!
  1 comentario
Xin Shen
Xin Shen el 10 de Jul. de 2019
When I tried your idea to solve my problem, I got an error "SVD does not support sparse matrices. Use SVDS to compute a subset of the singular values and vectors of a sparse matrix". Does SVDS work for your idea?

Iniciar sesión para comentar.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by