4D matrix multiplication

2 visualizaciones (últimos 30 días)
Kamran
Kamran el 15 de Oct. de 2021
Comentada: Kamran el 20 de Oct. de 2021
I do the following in 4 loops and it takes ages to complete. Is there a way this code could be made more efficeint, without using parallel processing toolbox?
'steer' is a 136x101x101x16 matrix
'R' is a 136x16x16 matrix
'pow' and 'F' are 101x101 matrices.
pow = zeros(grdpts_y, grdpts_x); %grdpts_y, grdpts_x = 101
for l=1:nf %nf = 136
F = zeros(grdpts_y,grdpts_x);
for i=1:grdpts_x
for j=1:grdpts_y
F(i,j) = F(i,j) + 1./(squeeze(steer(l,i,j,:))'*squeeze(R(l,:,:))*squeeze(steer(l,i,j,:)));
end
end
F = F.*conj(F);
pow = pow + F;
end
Thanks in advance,
Kamran

Respuesta aceptada

Matt J
Matt J el 15 de Oct. de 2021
Editada: Matt J el 18 de Oct. de 2021
steer=reshape( permute(steer,[2,3,4,1]),101^2,[],136 );
R=permute(R,[2,3,1]);
F=1./sum( pagemtimes(conj(steer),R).*steer, 2);
F=reshape( abs(F).^2 ,101,101,[]);
pow=sum(F,3);
  10 comentarios
Matt J
Matt J el 19 de Oct. de 2021
Editada: Matt J el 19 de Oct. de 2021
In your new version, F will always be real, non-negative, so I don't know why you would still be computing conj(F).
steer=reshape( permute(steer,[2,3,4,1]),101^2,[],136 );
Vec_n=cell(1,nf);
for l=1:nf
[Vec, Val] = eig(squeeze(R(l,:,:)));
[Val Seq] = sort(max(Val));
Vec_s = Vec(:,Seq(nstat ,nstat));
Vec_n{l}= Vec(:,Seq(1:nstat-1));
end
Vec_n=cat(3,Vec_n{:});
F=1./sum( abs(pagemtimes(conj(steer),Vec_n)).^2, 2);
F=reshape( abs(F).^2 ,101,101,[]);
pow=sum(F,3);
Kamran
Kamran el 20 de Oct. de 2021
Thank you very much. You are of course right. Thanks again for the prompt help.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Particle & Nuclear Physics en Help Center y File Exchange.

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by