4D matrix multiplication
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Kamran
el 15 de Oct. de 2021
Comentada: Kamran
el 20 de Oct. de 2021
I do the following in 4 loops and it takes ages to complete. Is there a way this code could be made more efficeint, without using parallel processing toolbox?
'steer' is a 136x101x101x16 matrix
'R' is a 136x16x16 matrix
'pow' and 'F' are 101x101 matrices.
pow = zeros(grdpts_y, grdpts_x); %grdpts_y, grdpts_x = 101
for l=1:nf %nf = 136
F = zeros(grdpts_y,grdpts_x);
for i=1:grdpts_x
for j=1:grdpts_y
F(i,j) = F(i,j) + 1./(squeeze(steer(l,i,j,:))'*squeeze(R(l,:,:))*squeeze(steer(l,i,j,:)));
end
end
F = F.*conj(F);
pow = pow + F;
end
Thanks in advance,
Kamran
0 comentarios
Respuesta aceptada
Matt J
el 15 de Oct. de 2021
Editada: Matt J
el 18 de Oct. de 2021
steer=reshape( permute(steer,[2,3,4,1]),101^2,[],136 );
R=permute(R,[2,3,1]);
F=1./sum( pagemtimes(conj(steer),R).*steer, 2);
F=reshape( abs(F).^2 ,101,101,[]);
pow=sum(F,3);
10 comentarios
Matt J
el 19 de Oct. de 2021
Editada: Matt J
el 19 de Oct. de 2021
In your new version, F will always be real, non-negative, so I don't know why you would still be computing conj(F).
steer=reshape( permute(steer,[2,3,4,1]),101^2,[],136 );
Vec_n=cell(1,nf);
for l=1:nf
[Vec, Val] = eig(squeeze(R(l,:,:)));
[Val Seq] = sort(max(Val));
Vec_s = Vec(:,Seq(nstat ,nstat));
Vec_n{l}= Vec(:,Seq(1:nstat-1));
end
Vec_n=cat(3,Vec_n{:});
F=1./sum( abs(pagemtimes(conj(steer),Vec_n)).^2, 2);
F=reshape( abs(F).^2 ,101,101,[]);
pow=sum(F,3);
Más respuestas (0)
Ver también
Categorías
Más información sobre Particle & Nuclear Physics en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!