Direction field and slope field- quiver

32 visualizaciones (últimos 30 días)
Anand Ra
Anand Ra el 26 de Nov. de 2021
Comentada: Anand Ra el 30 de Nov. de 2021
Looking for some help to generate slope field for the below differential equation
% dN/dt = (b − a ln(N))N
[N,t]=meshgrid(0:1:6,0:1:10);
%Case 1: b<a
b=10;
a=20;
dN=(b - a.*log(N)).*N;
dt=1;
dNu=dN./sqrt(dN.^2+dt.^2);
dtu=dt./sqrt(dN.^2+dt.^2);
quiver(N,t,dtu,dNu)
Note sure how to fix the above. Any help would be appreictaed. Thank you.
  2 comentarios
Shivam Singh
Shivam Singh el 29 de Nov. de 2021
Hello Anand,
In the differential equation provided, dr/dt = (b − a ln(N))N, what is the "N"? Is it a variable different from "r" or the same?
Anand Ra
Anand Ra el 29 de Nov. de 2021
Hello Shivam, thanks for responding.
Its suppose to be N ( r=N). My bad, sorry for the typo.

Iniciar sesión para comentar.

Respuestas (1)

Shivam Singh
Shivam Singh el 29 de Nov. de 2021
Hello Anand,
“quiver (X, Y, U, V)” plots arrows with directional components U and V at the Cartesian coordinates specified by X and Y. So, if you have a function Z = f(X, Y) with two independent variables X and Y, then you need two directional components, U and V as U = dZ/dX and V = dZ/dY to create a slope plot or direction plot.
Currently your code has only one independent variable 't' and a single directional component dN/dt.
For more information, you can explore “quiver” function.

Categorías

Más información sobre Vector Fields en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by