dbode results in phase shift that is wrong (I believe)
25 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Brian Tremaine
el 21 de En. de 2022
Comentada: Brian Tremaine
el 21 de En. de 2022
I'm looking at bode plots of linear phase FIR filters and I believe I am getting the wrong phase plot with filter order > 5.
In particular, I'm looking at a moving average filter.
% FIR phase error ?
% LFIR.m
Ts= 1E-3;
n=6;
num= (1/n)*[ones(1,n)];
den= [1 zeros(1,n)];
sys=tf(num,den,Ts);
figure(1); pzmap(sys);
figure(2); dbode(num,den,Ts);
From the pzmap it can be seen that for small positive frequencies on the unit circle the phase contribution should be near zero. However the dbode plot shows the phase at w=0 r/s to be 360 degree. If I use n=5 or less, I do get 0 deg phase at w ~= 0 rad/sec. Is this a problem with dbode?
MATLAB Version: 9.10.0.1739362 (R2021a) Update 5
Here are the pzmap and dbode for n=6:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/868890/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/868895/image.png)
0 comentarios
Respuesta aceptada
Paul
el 21 de En. de 2022
dbode() callse bode(), which in turn has an algorithm that tries to "unwrap" the phase by adding multiples of 360 deg across the frequency range. But the phase at each frequency is still correct. We can see this, for example, at low frequency
Ts= 1E-3;
n=6;
num= (1/n)*[ones(1,n)];
den= [1 zeros(1,n)];
sys=tf(num,den,Ts);
[m,p,w] = bode(sys);
p(1)
pcheck = angle(polyval(num,exp(1j*w(1)*Ts))/polyval(den,exp(1j*w(1)*Ts)))*180/pi
pcheck + 360
If you prefer the phase to always be between +-180, one approach is to use bodeplot() with phase wrapping on
opts = bodeoptions;
opts.PhaseWrapping = 'on';
bodeplot(sys,opts)
Más respuestas (0)
Ver también
Categorías
Más información sobre Matched Filter and Ambiguity Function en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!