Finite difference method to solve a nonlinear eqn?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Onur Metin Mertaslan
el 25 de Mzo. de 2022
Comentada: Onur Metin Mertaslan
el 25 de Mzo. de 2022
Hello,
I have a second order nonlinear question and I need to solve it for different times by using finite difference method but I don't know how to start it. I am quite new in Matlab. Is there anyone who can help me or at least show me a way to do this?
thank you
6 comentarios
Torsten
el 25 de Mzo. de 2022
g = 9.81;
L = 1.0;
T = 1.0;
dT = 0.01;
y_0 = pi/2;
v_0 = 0;
f = @(t,y)[y(2);-g/L*sin(y(1))];
tspan = 0:dT:T;
y0 = [y_0;v_0];
[t,y] = ode45(f,tspan,y0);
plot(t,y)
Respuesta aceptada
Torsten
el 25 de Mzo. de 2022
Editada: Torsten
el 25 de Mzo. de 2022
g = 9.81;
L = 1.0;
T = 1.0;
dT = 0.01;
y_0 = pi/2;
v_0 = 0;
f = @(t,y)[y(2);-g/L*sin(y(1))];
tspan = 0:dT:T;
y0 = [y_0;v_0];
[t,y] = ode45(f,tspan,y0);
y_linear = v_0/sqrt(g/L)*sin(sqrt(g/L)*t) + y_0*cos(sqrt(g/L)*t);
plot(t,[y(:,1),y_linear])
3 comentarios
Torsten
el 25 de Mzo. de 2022
Editada: Torsten
el 25 de Mzo. de 2022
The graph won't change because the dt is not the actual stepsize of the solver, but prescribes the output times for ode45. The stepsize is chosen by the solver and computed internally - you can't influence it because it's adaptively chosen and different for each time step to meet a prescribed error tolerance.
If you want a fixed-step solver to solve your equations for which you can prescribe the stepsize, you will have to program it on your own. E.g. explicit Euler is a simple one.
Más respuestas (0)
Ver también
Categorías
Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!