How to Solve system of nonlinear PDE
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mohammed Hamza
el 2 de Abr. de 2022
Hello,
I'm trying to solve this system of non-linear equations for a while. Unfortunatly it seems that the code doesn't work as requested. The code attached below is used to model a PFR system. Would be really thankful if anyone could help :)
The equations are attached above.
clc
clear all
close all
Tin = 445; % Feed concentration
L = 17; % Reactor length
t0 = 0; % Initial Time
tf = 120; % Final time
nt = 100; % Number of time steps
t = linspace(t0, tf, nt); % Time vector
time = t;
n = 10; % Number of axial steps
z = linspace(0,L,n); % Axial vector
n = numel(z); % Size of mesh grid
T0 = zeros(n,1); % t = 0, T = 0
T0(1) = Tin; % t = 0, T = 440 for z = 1
Ya0 = zeros(n,1); % t = 0, Ya = 0 for all z,
Ya0(1) = 0.5; % t = 0, Ya = 0.4 for z = 1
Yb0 = zeros(n,1); % t = 0, Yb = 0 for all z,
Yb0(1) = 0.5; % t = 0, Yb = 0.3 for z = 1
y0 = [ T0 ; Ya0 ; Yb0 ]; % All intial values enter to the same vector
% Appends conditions together
[t, y] = ode45(@(t,y) f(t,y,z,n,time,nt),[t0 tf],y0);
% t is the time
% y is T,Ya,Yb
% z is the axial vector
% n is the number of axial steps
% time is
% Plotting
figure; plot(z, y(end,n+1:2*n));
title('Ya at final time & z=1');
xlabel('distance')
ylabel('Ya')
figure; plot(z, y(end,2*n+1:3*n));
title('Yb at final time at final time & z=1');
xlabel('distance')
ylabel('Yb')
figure; plot(z, y(end,1:n));
title('T at final time at final time & z=1' );
xlabel('distance')
ylabel('Temperature')
function dydt=f(t,y,z,n,time,nt)
% Constant Parameters
D_p = 0.003;
mu = 0.18*(10^-4);
epsilon = 0.4;
alpha = 0.19038;
rho_cat = 2000;
lambda = 23237;
E = 69710;
R_rate = 8.314; %kJ/kmol.K
R_conc = 0.08314; % m^3.bar/kmol.K
MA = 15;
MB = 20;
c = 2;
D_r = 1.71; %Diameter of reactor
L_r = 17; %Length of reactor
c_cat = 0.5;
Area = pi*(D_r^2)/4;
Pressure = 50 ;
% Initiallizing the derivatives
dTdt = zeros(n,1);
dYadt = zeros(n,1);
dYbdt = zeros(n,1);
dTdz = zeros(n,1);
dYadz = zeros(n,1);
dYbdz = zeros(n,1);
dt = zeros(n,1);
% Extracting the initial values
T = y(1:n);
Ya = y(n+1:2*n);
Yb = y(2*n+1:3*n);
% Defining the axial change
%for i=2:n-1
for i=2:n
dTdz(i)= (T(i)-T(i-1))/(z(i)-z(i-1));
dYadz(i)= (Ya(i)-Ya(i-1))/(z(i)-z(i-1));
dYbdz(i)= (Yb(i)-Yb(i-1))/(z(i)-z(i-1));
end
% Calculated Parameters
round_n = nnz(dTdt)+1;
rho_molar = Pressure/(T(round_n)*1.01325*0.082057);
MM_avg = Ya(round_n)*MA+Yb(round_n)*MB;
rho = rho_molar*MM_avg;
V_rate = Pressure*MM_avg/rho;
v = V_rate/Area;
%Re = D_p*v*rho/mu;
%f = (1-epsilon)*(1.75+150*(1-epsilon)/Re)/(epsilon^3);
r_c = alpha*rho_cat*exp(-E/(R_rate* T(round_n)))*Ya(round_n)*Yb(round_n)*(Pressure)^2;
C = Pressure/(R_conc*T(round_n));
% Calculating outputs
for i=2:n
dTdt(i) = (-c*rho*v*(dTdz(i))-lambda*r_c)/(rho_cat*c_cat);
% T(i) = dTdt(i)*dt(i)+T(i-1);
dYadt(i) = (-v*dYadz(i)-(1-Ya(round_n))*r_c/C)/epsilon;
% Ya(i) = dYadt(i)*dt(i)+Ya(i-1);
dYbdt(i) = (-v*dYbdz(i)-(1-Yb(round_n))*r_c/C)/epsilon;
% Yb(i) = dYbdt(i)*dt(i)+Yb(i-1);
end
% Send the latest outputs back
dydt=[dTdt;dYadt;dYbdt];
end
15 comentarios
Torsten
el 2 de Abr. de 2022
Editada: Torsten
el 2 de Abr. de 2022
You set an initial condition for T to 0 K over the complete z-range except for T(1) which is 445 K (same for the molar fractions).
T0 = zeros(n,1); % t = 0, T = 0
T0(1) = Tin; % t = 0, T = 440 for z = 1
Ya0 = zeros(n,1); % t = 0, Ya = 0 for all z,
Ya0(1) = 0.5; % t = 0, Ya = 0.4 for z = 1
Yb0 = zeros(n,1); % t = 0, Yb = 0 for all z,
Yb0(1) = 0.5; % t = 0, Yb = 0.3 for z = 1
y0 = [ T0 ; Ya0 ; Yb0 ]; % All intial values enter to the same vector
% Appends conditions together
[t, y] = ode45(@(t,y) f(t,y,z,n,time,nt),[t0 tf],y0);
Respuesta aceptada
Torsten
el 2 de Abr. de 2022
Editada: Torsten
el 3 de Abr. de 2022
Looks better, doesn't it ?
Tin = 445; % Feed concentration
L = 17; % Reactor length
t0 = 0; % Initial Time
tf = 120; % Final time
nt = 100; % Number of time steps
t = linspace(t0, tf, nt); % Time vector
time = t;
n = 100; % Number of axial steps
z = linspace(0,L,n); % Axial vector
n = numel(z); % Size of mesh grid
T0 = 293.15*ones(n,1); % t = 0, T = 0
T0(1) = Tin; % t = 0, T = 440 for z = 1
Ya0 = 0.01*ones(n,1); % t = 0, Ya = 0 for all z,
Ya0(1) = 0.5; % t = 0, Ya = 0.4 for z = 1
Yb0 = 0.01*ones(n,1); % t = 0, Yb = 0 for all z,
Yb0(1) = 0.5; % t = 0, Yb = 0.3 for z = 1
y0 = [ T0 ; Ya0 ; Yb0 ]; % All intial values enter to the same vector
% Appends conditions together
[t, y] = ode15s(@(t,y) f(t,y,z,n,time,nt),[t0 tf],y0);
% t is the time
% y is T,Ya,Yb
% z is the axial vector
% n is the number of axial steps
% time is
% Plotting
figure; plot(z,[y(20,n+1:2*n);y(40,n+1:2*n);y(60,n+1:2*n);y(80,n+1:2*n);y(end,n+1:2*n)]);
title('Ya at final time & z=1');
xlabel('distance')
ylabel('Ya')
figure; plot(z,[y(20,2*n+1:3*n);y(40,2*n+1:3*n);y(60,2*n+1:3*n);y(80,2*n+1:3*n);y(end,2*n+1:3*n)]);
title('Yb at final time at final time & z=1');
xlabel('distance')
ylabel('Yb')
figure; plot(z,[y(20,1:n);y(40,1:n);y(60,1:n);y(80,1:n);y(end,1:n)]);
title('T at final time at final time & z=1' );
xlabel('distance')
ylabel('Temperature')
function dydt=f(t,y,z,n,time,nt)
% Constant Parameters
D_p = 0.003;
mu = 0.18*(10^-4);
epsilon = 0.4;
alpha = 0.19038;
rho_cat = 2000;
lambda = 23237;
E = 69710;
R_rate = 8.314; %kJ/kmol.K
R_conc = 0.08314; % m^3.bar/kmol.K
MA = 15;
MB = 20;
c = 2;
D_r = 1.71; %Diameter of reactor
L_r = 17; %Length of reactor
c_cat = 0.5;
Area = pi*(D_r^2)/4;
Pressure = 50 ;
% Initiallizing the derivatives
dTdt = zeros(n,1);
dYadt = zeros(n,1);
dYbdt = zeros(n,1);
dTdz = zeros(n,1);
dYadz = zeros(n,1);
dYbdz = zeros(n,1);
dt = zeros(n,1);
% Extracting the initial values
T = y(1:n);
Ya = y(n+1:2*n);
Yb = y(2*n+1:3*n);
% Defining the axial change
%for i=2:n-1
for i=2:n
dTdz(i)= (T(i)-T(i-1))/(z(i)-z(i-1));
dYadz(i)= (Ya(i)-Ya(i-1))/(z(i)-z(i-1));
dYbdz(i)= (Yb(i)-Yb(i-1))/(z(i)-z(i-1));
end
% Calculating outputs
for i=2:n
% Calculated Parameters
rho_molar = Pressure/(T(i)*1.01325*0.082057);
MM_avg = Ya(i)*MA+Yb(i)*MB;
rho = rho_molar*MM_avg;
V_rate = Pressure*MM_avg/rho;
v = V_rate/Area;
%Re = D_p*v*rho/mu;
%f = (1-epsilon)*(1.75+150*(1-epsilon)/Re)/(epsilon^3);
r_c = alpha*rho_cat*exp(-E/(R_rate* T(i)))*Ya(i)*Yb(i)*(Pressure)^2;
C = Pressure/(R_conc*T(i));
dTdt(i) = (-c*rho*v*dTdz(i)-lambda*r_c)/(rho_cat*c_cat);
% T(i) = dTdt(i)*dt(i)+T(i-1);
dYadt(i) = (-v*dYadz(i)-(1-Ya(i))*r_c/C)/epsilon;
% Ya(i) = dYadt(i)*dt(i)+Ya(i-1);
dYbdt(i) = (-v*dYbdz(i)-(1-Yb(i))*r_c/C)/epsilon;
% Yb(i) = dYbdt(i)*dt(i)+Yb(i-1);
end
% Send the latest outputs back
dydt=[dTdt;dYadt;dYbdt];
end
1 comentario
Torsten
el 3 de Abr. de 2022
Yes, I had put your script into a function and forgot to remove the "end" when copying it back.
Thanks for pointing it out.
Más respuestas (0)
Ver también
Categorías
Más información sobre Eigenvalue Problems en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!