Find intersections of curves

4 visualizaciones (últimos 30 días)
SAM
SAM el 24 de Abr. de 2022
Editada: Torsten el 24 de Abr. de 2022
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you

Respuesta aceptada

Matt J
Matt J el 24 de Abr. de 2022
Editada: Matt J el 24 de Abr. de 2022
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22) ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])

Más respuestas (2)

Torsten
Torsten el 24 de Abr. de 2022
bL = 0 is the intersection point.
hold on
plot(0,0,'.')
  2 comentarios
SAM
SAM el 24 de Abr. de 2022
I want a value other than 0
Torsten
Torsten el 24 de Abr. de 2022
Editada: Torsten el 24 de Abr. de 2022
a = 8.0901e-5;
fun1 = @(a,x) a*sinh(x);
fun2 = @(a,x) sin(2*a*x);
f=@(a,x)fun1(a,x)-fun2(a,x)
x1 = fzero(@(x)f(a,x),[2,2.5])
x2 = fzero(@(x)f(a,x),[-3,-2])
x=-2.5:0.01:2.5;
plot(x,fun1(a,x))
hold on
plot(x,fun2(a,x))
hold on
plot(x1,fun1(a,x1),'.')
hold on
plot(x2,fun1(a,x2),'.')
hold on
plot(0,0,'.')

Iniciar sesión para comentar.


Sam Chak
Sam Chak el 24 de Abr. de 2022
Editada: Sam Chak el 24 de Abr. de 2022
Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at .

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by