Multivariable Zeros using Generalised Eigenvalue Problem
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Akshay Vivek Panchwagh
el 26 de Jul. de 2022
Comentada: Akshay Vivek Panchwagh
el 27 de Jul. de 2022
So I have the following matrices which represent a state-space configuration:
A = [-3 5 -7 0; 0.5 -1.5 0.5 -7.5; -5 0 -3 0; -0.5 -5 0 -7];
B = [1 0; 0 -1; -2 0; 0 1];
C = [1 0 0 0; 0 -1 0 0];
D = [-1 0; 2 0];
As mentioned in the question, I need to find the multivariable zeros of the above system using generalised eigenvalue problem.
I understand that ideally, generealised Eigenvalues can be obtained from
[V,D] = eig(A,B)
However, if I try to input my matrices in this code, it does not run for the obvious reasons. I tried doing
[V,D] = eig(A,A)
and it works, but I am not sure if that is the right way. Even so, I am unable to figure out how I can calculate zeros from the V and D matrices.
Can anyone please suggest me how I can approach this problem at hand?
2 comentarios
Respuestas (1)
Ver también
Categorías
Más información sobre Stability Analysis en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!