Fourth order approx. of first derivative.

3 visualizaciones (últimos 30 días)
Jim Oste
Jim Oste el 25 de Feb. de 2015
Comentada: John D'Errico el 25 de Feb. de 2015
I am working with numerical differentiation and I am approximating the first derivative of f(x)=sin^2(x) with a fourth order approximation of the form:
I have the following code to approximate f'(x) at a = pi/4
k = 1:15;
h = 10.^(-k);
a = pi/4;
D = (1/12.*h).*(-3.*sin(a-h).^2-10.*sin(a).^2+18.*sin(a+h).^2-...
6.*sin(a+2.*h).^2+sin(a+3.*h).^2);
As h gets smaller D should be getting closer to 1 but when I run this code D gets closer to zero. Am I imputing the sin term incorrectly?

Respuesta aceptada

Roger Stafford
Roger Stafford el 25 de Feb. de 2015
Your code for 'D' has an error. You have multiplied by 'h' instead of dividing by it. The code should read:
D = (1/12./h).*(-3.*sin(a-h).^2 ...........
  4 comentarios
Jim Oste
Jim Oste el 25 de Feb. de 2015
Exactly, we were getting practice with numerical differentiation and using Taylor expansions to find approximations with varying offsetted polynomials.
John D'Errico
John D'Errico el 25 de Feb. de 2015
I thought so. A worthwhile thing to do is to look at the centered difference to compute that same value, varying over -2h to +2h. Why would it be a better choice of method in general? Thus, something like this (assuming I did my back of the envelope computations properly)
((f(2h) - f(-2h)) - 8*(f(h) - f(-h)))/(12h)
Why might the above template be a better choice in general, if it is available?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Polynomials en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by