linear inequality constrains based on absolute values
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
D D
el 6 de Oct. de 2022
Comentada: Walter Roberson
el 7 de Oct. de 2022
Please help me to define the inequality constrains for quadprog in the below scenario
x+y <= 0.1*abs(x)
x+y >= -0.1*abs(x)
0 comentarios
Respuesta aceptada
Matt J
el 6 de Oct. de 2022
Editada: Matt J
el 6 de Oct. de 2022
The constraints correspond to a non-convex region in (as Walter's second plot shows). You would have to break it into two regions and optimize over each one separately:
Region 1:
x<=0
x+y <= 0.1*(-x)
x+y >= -0.1*(-x)
Region 2:
x>=0
x+y <= 0.1*(x)
x+y >= -0.1*(x)
3 comentarios
Walter Roberson
el 7 de Oct. de 2022
There is no point which is not in one of the regions or the other, so solving separately and looking for the best between the two is going to get you the same result as if you had no constraint.
It would make more sense if the conditions were "and" and you processed the intersection of the constraints in two pieces, one for negative x and the other for non-negative x, and took the best between the two of those.
Más respuestas (1)
Walter Roberson
el 6 de Oct. de 2022
x = linspace(-0.005, 0.005, 100);
y = linspace(-0.005, 0.005, 101).';
M1 = x + y <= 0.1*abs(x);
M2 = x + y >= -0.1*abs(x);
[r1, c1] = find(M1);
[r2, c2] = find(M2);
plot(x(c1), y(r1), 'k.', x(c2), y(r2), 'ro');
As you can see from the plot, there is nowhere which is not part of one of the regions or the other, so nothing is constrained out.
Matters would be different if the constraints were "and".
x = linspace(-0.0003, 0.0003, 1000);
y = linspace(-0.0003, 0.0003, 1001).';
M1 = x + y <= 0.1*abs(x);
M2 = x + y >= -0.1*abs(x);
[r1, c1] = find(M1 & M2);
plot(x(c1), y(r1), 'k.');
I think the small gap is a matter of resolution.
0 comentarios
Ver también
Categorías
Más información sobre Solver Outputs and Iterative Display en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!