Normalization of zero padded signals
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have a simple question regarding zero padding and normalization. Consider an impulse resonse of a 4 point moving average filter. and its fft zero padded to 1024 points..
x=[1/4 1/4 1/4 1/4]
X=fft(x,1024 )
xpowrsum=dot(x,x)
Xpowrsum=dot(abs(X),abs(X))/1024
plot(fftshift(abs(X)))
![FFT of 4 PT moving average](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1164733/FFT%20of%204%20PT%20moving%20average.jpeg)
By Parsevals theorem the two energies are equal as expected. However, the fft without scaling shows the correct frequency response with a gain of 1 at 0 Hz. So why do I always read the FFT should be scaled by the number of samples before zero padding (in this case 4) if I am interested in the magnitude response of the filter?
0 comentarios
Respuestas (2)
Matt J
el 21 de Oct. de 2022
Editada: Matt J
el 21 de Oct. de 2022
So why do I always read the FFT should be scaled by the number of samples before zero padding (in this case 4) if I am interested in the magnitude response of the filter?
The FFT is a tool with many applications, each with its own appropriate scaling.
Scaling by 1/N is done when the FFT is being used to evaluate the Discrete Fourier Series.
When it is being used to approximate the continuous Fourier transform, it is scaled by the time sampling interval 1/Fs.
To achieve Parseval's equality, the fft should be scaled by 1/sqrt(N):
x=[1/4 1/4 1/4 1/4];
X=fft(x,1024 )/sqrt(1024);
xpowrsum=norm(x).^2
Xpowrsum=norm(X).^2
6 comentarios
Matt J
el 22 de Oct. de 2022
Editada: Matt J
el 22 de Oct. de 2022
The definition of the DFS will indeed vary from textbook to textbook. The bottom line is if you want your DC component to be the average of the signal values, you would divide fft() by N. Otherwise, DC will be the sum of the signal values.
Matt J
el 23 de Oct. de 2022
Editada: Matt J
el 23 de Oct. de 2022
One example to motivate the 1/N factor is to consider a periodic signal like,
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1166613/image.png)
If the goal is to recover the coefficients of the sinusoidal terms (5 and 3), we can see in the following code that the 1/N is necessary.
N=10;
n=(0:9)';
x=5+3*exp(1j*2*pi*n/N);
c=fft(x)/N
Marc Fuller
el 23 de Oct. de 2022
9 comentarios
Paul
el 24 de Oct. de 2022
I thought that you probably meant that. I haven't looked at cyconv. Is it preferred over Matlab's cconv for some reason?
rng(100);
x=rand(1,5); h=rand(1,5);
fft(cconv(x,h,5))
fft(x).*fft(h)
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!