Contour plot in Smith chart - how to do it?

15 visualizaciones (últimos 30 días)
dm
dm el 18 de Oct. de 2011
Comentada: Mena Labib el 12 de Nov. de 2019
I got a set of measured load-pull (LP) data from an amplifier, which I'd like to plot as contours in the Smith chart (an example on the desired end result: http://www.mwrf.com/files/30/21651/fig_02.gif )
I've put out a .txt file with the LP measurements on my public DropBox if anyone want to have a go at it ( http://dl.dropbox.com/u/13366636/lp_data.txt )
I import the data from the *.txt file as following:
% Measured loads are inside |G| = [0.1,0.8], <G = [0 180]
A = importdata('lp_data.txt');
Gmag = A.data(:,2); % magnitude of load reflection coeff.
Gphase = A.data(:,3); % phase of load reflection coeff., degrees
Gamma = Gmag.*exp(1i*Gphase*pi/180); % complex load reflection coeff
Pout = A.data(:,5); % measured output power, dBm
Gain = A.data(:,6); % measured power gain, dB
PAE = A.data(:,8); % measured power added efficiency, %
DC2RF = A.data(:,9); % measured drain efficiency, %
But from here on I really don't know how to proceed to be able to plot the LP data as contours. I had a look at the second last example at http://www.mathworks.se/help/techdoc/creating_plots/f10-2524.html but my problem is what to do about the Z-matrix (or even maybe how to make the proper X and Y matrices as well?). I haven't made measurements at all possible complex loads, so I assume I must perform some kind of interpolation in order for this to work, but as mentioned, here I'm clueluess.
Anyone who got any suggestions for where to start?
Best regards, dm

Respuesta aceptada

Matt Tearle
Matt Tearle el 18 de Oct. de 2011
Not sure what your X, Y, and Z are, but I assume it's something like DC2RF (Z) as a function of Gmag and Gphase. In that case, something like this might work:
Greal = Gmag.*cosd(Gphase);
Gimag = Gmag.*sind(Gphase);
[X,Y] = meshgrid(linspace(min(Greal),max(Greal)),linspace(min(Gimag),max(Gimag)));
F = TriScatteredInterp(Greal,Gimag,DC2RF);
Z = F(X,Y);
h = polar([-pi pi], [0 1]);
delete(h)
hold on
contour(X,Y,Z,30)
  2 comentarios
dm
dm el 18 de Oct. de 2011
Thanks alot for your help! The TriScatteredInterp function was the missing link here!
Mena Labib
Mena Labib el 12 de Nov. de 2019
I'm working on visualizing EVM Load Pull data as well.
The issue i'm facing is that the polar plot underlaying the contour doesn't properly reflect VSWR circles (i.e VSWR1 is a dot on a smith chart, but an entire circle on the polar plot).
I was wondering if there was a way to plot these real and imag values on a smith chart, and overlay a contour?
Here's my code using the suggested method, and a corresponding plot (note how the inner circle is empty even though my data uses VSWR1)
Gmag = [1.18, 1.0, 1.16, 1.16, 1.1, 1.16, 1.16, 1.09, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.06, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.16, 1.16, 1.19, 1.19, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.18, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.18, 1.2, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]; % A.data(:,2); % magnitude of load reflection coeff.
Gphase = [13.18, 78.68, 12.84, 14.63, 20.07, 16.44, 16.72, 83.04, 44.97, 50.03, 55.04, 60.02, 64.98, 70.05, 75.02, 79.96, 84.94, 90.08, 95.0, 99.94, 104.97, 109.86, 114.87, 120.28, 124.78, 130.06, 135.01, 140.16, 145.05, 149.89, 99.42, 159.92, 165.03, 170.01, 174.66, 179.72, -175.08, -169.9, -165.17, -159.95, -154.75, -150.2, -144.83, -140.16, -134.74, -130.03, -125.24, -119.84, -114.99, -110.01, -105.0, -99.87, -95.13, -89.92, -85.05, -80.02, -74.87, -70.0, -64.98, -60.04, -54.98, -50.0, -45.02, -40.0, -35.01, -30.02, -25.0, -20.02, -14.99, 11.24, 11.87, 8.76, 8.65, 10.0, 14.99, 19.99, 24.99, 30.01, 34.98, 20.01, 44.97, 50.0, 54.99, 59.98, 65.02, 69.98, 74.95, 79.95, 85.06, 90.0, 95.01, 100.02, 105.13, 109.98, 115.1, 120.09, 124.95, 129.91, 134.92, 140.13, 145.11, 149.9, 155.03, 160.12, 165.22, 170.1, 175.18, -179.91, -175.15, -169.98, -164.86, -160.16, -154.81, -150.06, -144.84, -140.16, -135.02, -129.83, -125.15, -120.0, -114.9, -109.86, -104.82, -99.87, -94.93, -90.0, -85.08, -79.87, -75.04, -69.96, -64.91, -60.09, -55.04, -50.06, -45.05, -40.05, -34.95, -30.01, -24.96, -19.99, -14.97, 8.41, -4.98, -0.03, 5.01, 9.99, 14.99, 19.97, 25.04, 30.03, 34.96, 40.05, 45.0, 50.01, 55.05, 60.41, 64.91, 69.92, 75.09, 80.06, 84.91, 90.11, 94.97, 99.93, 104.96, 110.07, 115.01, 120.07, 124.75, 130.04, 135.03, 140.07, 144.82, 150.11, 155.05, 159.99, 164.97, 169.9, 174.97, -179.97, -174.95, -169.92, -164.91, -159.88, -154.88, -149.95, -145.09, -139.85, -135.05, -129.85, -124.7, -120.02, -115.0, -110.08, -104.89, -100.08, -94.99, -90.01, -84.87, -80.03, -74.99, -70.03, -64.91, -60.08, -54.93, -50.06, -44.98, -40.03, -35.05, -30.06, -25.05, -20.02, -15.04, -10.03, -4.99, -0.02, 4.99, 10.04, 15.05, 19.94, 25.02, 29.97, 35.01, 40.05, 44.93, 50.0, 54.97, 59.98, 65.04, 70.1, 75.16, 79.98, 84.96, 90.07, 95.0, 100.1, 105.05, 110.09, 114.9, 120.11, 124.85, 129.96, 135.13, 140.1, 145.13, 149.88, 155.16, 160.08, 165.07, 170.04, 175.06, -179.88, -174.83, -169.79, -165.2, -160.17, -155.18, -149.86, -145.02, -139.83, -135.03, -129.92, -124.88, -119.91, -115.06, -109.91, -104.87, -99.9, -95.08, -90.07, -85.11, -79.95, -74.89, -69.9, -64.98, -59.93, -55.0, -49.98, -45.05, -40.04, -35.08, -30.04, -24.99, -20.03, -14.96, -9.95, -5.06, 0.02, 4.98, 10.04, 14.95, 20.02, 25.05, 30.03, 34.99, 39.96, 44.95, 50.02, 54.97, 60.08, 64.95, 70.01, 74.94, 80.06, 84.89, 90.11, 94.93, 100.08, 105.08, 109.9, 115.1, 120.03, 125.1, 129.96, 134.87, 139.88, 144.98, 150.15, 155.12, 160.19, 164.88, 169.96, 175.06, 179.91, -174.89, -170.13, -165.03, -159.91, -154.82, -150.17, -144.84, -139.92, -135.04, -129.87, -125.13, -120.13, -114.9, -110.08, -105.02, -100.08, -95.02, -89.99, -85.03, -79.88, -75.08, -70.07, -64.95, -59.94, -55.01, -49.92, -44.93, -39.94, -35.02, -29.96, -24.96, -20.01, -15.03, -10.05, -5.03, -0.0, 5.02, 10.04, 14.93, 19.96, 25.08, 29.94, 35.07, 39.99, 45.04, 50.08, 54.96, 59.99, 64.92, 69.98, 74.9, 79.97, 84.95, 90.08, 95.09, 99.9, 105.03, 110.0, 115.06, 120.16, 125.05, 130.03, 135.11, 139.96, 144.89, 149.89, 154.98, 159.89, 165.17, 170.08, 175.02, -179.97, -174.95, -169.99, -165.07, -160.15, -154.89, -150.07, -144.95, -139.88, -134.86, -129.93, -125.08, -119.99, -114.99, -110.11, -104.96, -100.0, -95.12, -89.99, -84.94, -79.97, -75.06, -69.96, -65.0, -60.12, -55.06, -50.04, -44.97, -39.9, -35.09, -30.05, -25.01, -20.04, -14.99, -10.02, -4.94, 0.08, 5.03, 10.01, 15.03, 20.01, 25.06, 29.98, 34.99, 39.93, 44.97, 49.97, 54.93, 60.07, 65.08, 69.98, 74.97, 80.01, 84.95, 90.05, 94.98, 100.04, 105.09, 109.99, 114.98, 120.03, 125.14, 130.01, 134.98, 140.03, 145.16, 150.04, 154.98, 160.08, 164.86, 170.01, 175.16, -179.96, -175.08, -169.88, -165.09, -159.95, -154.84, -150.15, -144.83, -139.91, -135.04, -129.92, -124.9, -119.98, -115.16, -110.1, -104.86, -100.11, -94.83, -89.88, -84.98, -80.12, -75.05, -70.09, -64.97, -59.91, -54.91, -49.97, -44.99, -40.01, -35.01, -29.98, -24.94, -19.93, -14.98, -10.03, -4.94, -0.05, 4.92, 9.94, 14.99, 20.01, 25.06, 29.99, 34.98, 40.08, 45.08, 49.99, 55.05, 60.05, 64.93, 70.09, 75.0, 80.03, 84.95, 90.03, 94.97, 99.99, 105.07, 109.94, 114.87, 119.87, 124.89, 129.97, 134.85, 140.12, 145.15, 149.93, 155.1, 160.07, 165.11, 170.14, 174.84, 179.95, -174.9, -170.17, -165.12, -160.09, -155.09, -150.16, -144.95, -140.13, -135.04, -130.04, -125.14, -120.02, -115.02, -110.1, -105.01, -100.07, -94.91, -90.08, -84.99, -79.98, -75.04, -69.93, -64.87, -59.88, -54.9, -50.04, -44.89, -39.96, -34.97, -29.94, -25.08, -20.02, -15.0, -9.95, -5.07, 0.03, 4.98, 9.97, 15.0, 19.99, 25.0, 30.07, 35.01, 40.02, 44.93, 49.94, 55.08, 59.93, 65.08, 70.08, 74.95, 80.01, 84.95, 90.03, 94.96, 99.96, 105.03, 110.14, 115.04, 120.0, 124.96, 129.99, 135.09, 139.97, 144.93, 149.96, 155.05, 159.9, 164.86, 170.16, 175.13, -179.86, -175.15, -170.13, -165.17, -159.88, -154.96, -150.11, -144.99, -139.93, -134.93, -130.02, -124.89, -119.9, -114.99, -109.87, -104.91, -100.06, -94.98, -89.94, -84.97, -80.03, -74.91, -70.11, -65.11, -59.91, -54.99, -49.96, -45.1, -39.96, -34.97, -29.93, -25.05, -19.97, -15.07, -9.94, -4.94, 0.08, 4.96, 10.07, 15.04, 19.97, 25.1, 30.08, 34.91, 40.04, 45.03, 49.92, 54.92, 60.06, 65.06, 70.11, 74.99, 80.03, 84.99, 90.06, 94.98, 99.98, 105.03, 110.13, 115.0, 119.91, 125.14, 130.11, 134.86, 139.98, 144.86, 149.85, 154.89, 160.01, 164.92, 170.16, 175.08, -179.98, -174.99, -170.04, -165.13, -159.91, -155.07, -149.97, -144.93, -139.95, -135.03, -129.89, -124.87, -119.96, -115.12, -110.09, -104.92, -99.86, -95.13, -89.9, -84.99, -80.12, -75.05, -70.05, -65.09, -59.9, -55.03, -50.05, -44.98, -40.09, -35.09, -30.07, -24.98, -20.06, -14.9, -10.09, -4.99]; % phase of load reflection coeff., degrees
EVM = [-38.4051, -38.1134, -38.355, -38.3263, -38.2224, -38.3309, -38.3149, -37.9574, -38.278, -38.2608, -38.2315, -38.2056, -38.1556, -38.0535, -37.9942, -37.9187, -37.8822, -37.8648, -37.8539, -37.8298, -37.7994, -37.7208, -37.755, -37.729, -37.7232, -37.7409, -37.7202, -37.6981, -37.6586, -37.6379, -37.7907, -37.6779, -37.6323, -37.6648, -37.6531, -37.6713, -37.6802, -37.7052, -37.7578, -37.8317, -37.8259, -37.8114, -37.8968, -37.9254, -37.974, -38.0336, -38.0665, -38.1079, -38.1336, -38.1613, -38.1823, -38.2185, -38.2856, -38.3487, -38.3557, -38.3954, -38.3843, -38.4437, -38.2693, -38.3124, -38.3271, -38.3513, -38.3359, -38.362, -38.3941, -38.3563, -38.3746, -38.3624, -38.3627, -38.3383, -38.3273, -38.4069, -38.452, -38.391, -38.3582, -38.4503, -38.4324, -38.3821, -38.3678, -38.301, -38.2737, -38.2078, -38.0747, -37.9603, -37.8644, -37.7504, -37.719, -37.6511, -37.6077, -37.5448, -37.4814, -37.448, -37.4185, -37.3624, -37.2848, -37.2474, -37.1796, -37.1483, -37.161, -37.1424, -37.1881, -37.1524, -37.1257, -37.1371, -37.1554, -37.1386, -37.1828, -37.2348, -37.232, -37.325, -37.3198, -37.3954, -37.472, -37.4969, -37.5833, -37.6132, -37.7443, -37.8164, -37.883, -37.9281, -37.9853, -38.115, -38.2355, -38.272, -38.2989, -38.3849, -38.4089, -38.5015, -38.5942, -38.6376, -38.6928, -38.6969, -38.7362, -38.7265, -38.8113, -38.6519, -38.656, -38.7967, -38.7928, -38.7978, -38.7152, -38.4262, -38.5853, -38.7598, -38.681, -38.6369, -38.5674, -38.5085, -38.437, -38.3364, -38.308, -38.2024, -38.0524, -37.8991, -37.8064, -37.7196, -37.6197, -37.5059, -37.4245, -37.3145, -37.4754, -37.3531, -37.2926, -37.1981, -37.1088, -37.0101, -36.9557, -36.892, -36.8387, -36.8611, -36.7916, -36.7695, -36.7369, -36.7368, -36.7556, -36.68, -36.7318, -36.7396, -36.7792, -36.8154, -36.8577, -36.9127, -37.0843, -37.1491, -37.2449, -37.297, -37.4034, -37.5307, -37.6244, -37.7371, -37.8205, -37.8964, -37.8005, -37.9368, -38.0677, -38.1649, -38.2884, -38.3965, -38.5003, -38.6042, -38.6095, -38.7152, -38.7235, -38.8295, -38.9127, -38.9336, -38.946, -39.0022, -39.032, -39.0462, -38.9798, -38.9851, -38.902, -38.8947, -38.8261, -38.8877, -38.803, -38.7031, -38.5904, -38.4916, -38.274, -38.1798, -38.0354, -37.9105, -38.0084, -37.9076, -37.7954, -37.6043, -37.5046, -37.416, -37.2582, -37.1408, -36.9959, -36.868, -36.7131, -36.6188, -36.571, -36.4606, -36.3642, -36.3157, -36.5066, -36.4439, -36.3851, -36.3422, -36.2772, -36.2973, -36.3016, -36.3023, -36.3127, -36.3707, -36.3935, -36.508, -36.5363, -36.6062, -36.6827, -36.7854, -36.8835, -37.0056, -37.1438, -37.2408, -37.1466, -37.2968, -37.4983, -37.6396, -37.783, -37.9294, -38.0643, -38.2309, -38.355, -38.505, -38.5939, -38.752, -38.8411, -38.7602, -38.8313, -38.9392, -38.9882, -39.0258, -39.0821, -39.0731, -39.0763, -39.0963, -39.0802, -39.0988, -39.04, -39.0098, -38.9575, -39.0037, -38.9056, -38.7832, -38.6536, -38.5301, -38.3817, -38.2346, -38.05, -37.8504, -37.7359, -37.547, -37.4161, -37.2221, -37.0722, -36.8726, -36.7257, -36.8489, -36.7024, -36.5591, -36.4603, -36.3358, -36.2143, -36.0778, -35.9588, -35.8441, -35.7917, -35.7538, -35.6916, -35.6615, -35.8852, -35.8819, -35.8831, -35.9429, -35.9435, -36.0165, -35.7564, -35.843, -35.9323, -36.0039, -36.1058, -36.2527, -36.3694, -36.5359, -36.6776, -36.8266, -36.9868, -37.1649, -37.2788, -37.4931, -37.7148, -37.8284, -37.9945, -38.1682, -38.3912, -38.3355, -38.4846, -38.6545, -38.801, -38.9048, -38.9998, -39.1538, -39.1546, -39.2793, -39.2881, -39.3179, -39.3515, -39.3789, -39.3469, -39.2909, -39.2532, -39.2125, -39.1185, -38.7676, -38.6445, -38.5307, -38.4127, -38.2517, -38.0659, -37.8854, -37.9914, -37.7717, -37.5859, -37.3495, -37.1883, -37.0157, -36.8398, -36.6747, -36.4901, -36.3033, -36.1668, -36.31, -36.1249, -35.9766, -35.8798, -35.6446, -35.5815, -35.5293, -35.3659, -35.3475, -35.3128, -35.2187, -35.2323, -35.1898, -35.205, -35.2015, -35.2118, -35.2352, -35.2996, -35.3898, -35.5183, -35.5893, -35.7687, -35.8567, -36.0515, -36.2103, -36.3774, -36.5881, -36.7329, -36.9508, -37.1042, -37.3089, -37.5175, -37.5272, -37.7395, -37.9789, -38.1881, -38.3895, -38.5442, -38.6909, -38.8327, -38.9909, -39.1453, -39.2218, -39.3222, -39.1621, -39.2343, -39.2591, -39.2403, -39.2691, -39.2107, -39.1571, -39.0887, -39.0759, -38.9248, -38.7508, -38.6387, -38.4571, -38.2916, -38.1544, -37.9174, -37.761, -37.4666, -37.2757, -37.0649, -36.8959, -36.9747, -36.7798, -36.589, -36.4391, -36.1609, -36.046, -35.847, -35.7066, -35.5329, -35.6906, -35.4576, -35.3471, -35.2178, -35.0921, -34.9537, -34.9298, -34.8249, -34.7449, -34.6821, -34.6776, -34.6772, -34.6928, -34.75, -34.8299, -34.8943, -34.9456, -35.0699, -35.2691, -35.3209, -35.5002, -35.6929, -35.8517, -36.0581, -36.3144, -36.5061, -36.6922, -36.941, -37.1787, -37.1655, -37.3878, -37.5921, -37.7779, -38.0572, -38.344, -38.5043, -38.738, -38.8945, -38.8177, -38.9489, -39.0708, -39.2085, -39.1779, -39.2755, -39.2703, -39.3354, -39.2857, -39.2541, -39.2052, -39.1141, -38.9845, -38.8833, -38.3128, -38.1104, -38.3522, -38.1545, -37.9732, -37.7625, -37.571, -37.3108, -37.0835, -36.8583, -36.6434, -36.4698, -36.5529, -36.2726, -36.1112, -35.8806, -35.6851, -35.5117, -35.3126, -35.0843, -34.8903, -35.0656, -34.8894, -34.7453, -34.6134, -34.5054, -34.3697, -34.2296, -34.2413, -34.1808, -34.1716, -34.4901, -34.4676, -34.5327, -34.5919, -34.6165, -34.744, -34.8944, -34.746, -34.9025, -35.1025, -35.2586, -35.4608, -35.7164, -35.9477, -36.1953, -36.4198, -36.6625, -36.947, -36.9646, -37.2592, -37.4883, -37.7505, -38.0851, -38.2558, -38.5417, -38.471, -38.6606, -38.8247, -39.0421, -39.1508, -39.1867, -39.2153, -39.2642, -39.3414, -39.3271, -39.3487, -39.2845, -39.1749, -38.7354, -38.5888, -38.5256, -38.0951, -37.9499, -37.7192, -37.5273, -37.3928, -37.5216, -37.3538, -37.1348, -36.7985, -36.6029, -36.3225, -36.1061, -35.902, -35.6788, -35.7856, -35.5399, -35.3041, -35.1122, -34.8601, -34.635, -34.7791, -34.5713, -34.4202, -34.2568, -34.0535, -33.9853, -33.912, -33.8052, -33.7502, -34.0063, -33.7955, -33.9652, -33.8692, -33.902, -34.0025, -34.0915, -34.1541, -34.2594, -34.4584, -34.6829, -34.5486, -34.79, -35.1194, -35.3928, -35.6164, -35.907, -36.1439, -36.4151, -36.7488, -36.7936, -37.0644, -37.3356, -37.6018, -37.8645, -38.1257, -38.179, -38.399, -38.5853, -38.8155, -38.9449, -39.0495, -39.1665, -38.9607, -38.9389, -38.9113, -38.8793, -38.8171, -38.8002, -38.7015, -38.5746, -38.4495, -38.2939, -37.8623, -37.6597, -37.4221, -37.2169, -37.0672, -36.8069, -36.6087, -36.7351, -36.4817, -36.2337, -36.0466, -35.792, -35.5211, -35.2782, -35.3605, -35.1163, -34.8546, -34.6045, -34.3675, -34.1527, -34.2363, -34.12, -33.8836, -33.7401, -33.5624, -33.4635, -33.2474, -33.1066, -33.4036, -33.3237, -33.2973, -33.2574, -33.3381, -33.3453, -33.4746, -33.5417, -33.6937, -33.8426, -34.0329, -34.1837, -34.372, -34.2864, -34.6102, -34.8972, -35.2161, -35.5671, -35.8944, -36.1583, -36.475, -36.4818, -36.8029, -37.1309, -37.3971, -37.6959, -37.9752, -37.9865, -38.2816, -38.4698, -38.6807, -38.82, -38.9049, -38.6991, -38.7356, -38.7473, -38.7071, -38.6845, -38.6045, -38.5745, -38.4227, -38.2886, -38.1656, -37.9956];
Greal = Gmag.*cosd(Gphase);
Gimag = Gmag.*sind(Gphase);
[X,Y] = meshgrid(linspace(min(Greal),max(Greal)),linspace(min(Gimag),max(Gimag)));
F = TriScatteredInterp(Greal',Gimag',EVM');
Z = F(X,Y);
h = polar([-pi pi], [2 3]);
delete(h)
hold on
contour(X,Y,Z,719)
EVMcontour.png

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Detection and Tracking Statistics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by