Computing error for solution to linear equation

1 visualización (últimos 30 días)
Tevin
Tevin el 19 de Dic. de 2022
Editada: John D'Errico el 8 de En. de 2023
I want to solve a linear equation Ax= b, using least-squares. I also need to find the error in the solution. I am not sure how to find the error.
Error is;
𝐸=‖𝐴𝒙−𝒃‖^2 =Σ𝜃𝑖^2 where i is index counter
A=[2 0;3 1;4 3];
b=[2;3;4];
x= A\b;
I am not sure how to calculate the error. Can someone help me?

Respuesta aceptada

Matt J
Matt J el 19 de Dic. de 2022
Editada: Matt J el 19 de Dic. de 2022
x= A\b;
E=norm(A*x-b)^2
  3 comentarios
Tevin
Tevin el 8 de En. de 2023
Should this actually be E=norm(A*x-b) without the square?
John D'Errico
John D'Errico el 8 de En. de 2023
Editada: John D'Errico el 8 de En. de 2023
NO, it should not be.
What was asked for? In your own question, you showed the norm(A*x-b) SQUARED. @Matt J gave you the square of the norm.
It can be whatever you want, but if you want something else, then it is you who needs to make the decision.

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by