Plotting the function by the points that need to be determined
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
It is necessary to plot F(t) by points. The function F(t) is a sum from 0 to nD(t)(nD is the upper limit of the sum) which depends on 't', i.e. I have an array 't' and an array nD(t) is formed from it, it contains 20 values [496, 248, 165, ...], the first point will be the final sum of F(t) with an upper limit of 496, the first point will be the final sum of F(t) with an upper limit of 248, etc., it is necessary to plot F(t) at these 20 points.
My code:
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t,nD);
plot(t,F, '-r');
%% F(t)
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = 0;
for i = 1:20
n = nD(1,i);
F = F + 1/(2*n+1).*(k0.*real(((f_p1(n,t)-f_p2(n,t))./2))+(f_arg_2(n,t)-f_arg_1(n,t))./d);
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
2 comentarios
Torsten
el 12 de En. de 2023
So you expect F to be a matrix of size numel(t) x numel(nD) where element (i,j) is the sum for t(i), taken from 0 to nD(j) ?
Respuestas (2)
Torsten
el 12 de En. de 2023
Editada: Torsten
el 15 de En. de 2023
Maybe something like this ?
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t,nD);
hold on
plot(t,F(:,1),"Color","red");
plot(t,F(:,numel(nD)),"Color","blue");
hold off
grid on
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = zeros(numel(t),numel(nD));
for i = 1:numel(t)
for j = 1:numel(nD)
n = nD(j);
for k = 0:n
F(i,j) = F(i,j) + 1/(2*k+1).*(k0.*real(((f_p1(k,t(i))-f_p2(k,t(i)))./2))+(f_arg_2(k,t(i))-f_arg_1(k,t(i)))./d);
end
end
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
7 comentarios
Torsten
el 15 de En. de 2023
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t,nD);
plot(t,F)
grid on
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = zeros(1,numel(t));
for i = 1:numel(t)
for k = 0:nD(i)
F(i) = F(i) + 1/(2*k+1).*(k0.*real(((f_p1(k,t(i))-f_p2(k,t(i)))./2))+(f_arg_2(k,t(i))-f_arg_1(k,t(i)))./d);
end
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
0 comentarios
Ver también
Categorías
Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!