I cannot the error in the bisection method...
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
llucia
el 6 de Abr. de 2023
Comentada: llucia
el 6 de Abr. de 2023
Hi! I am trying to detect why my code doesn´t work properly.
This is the code.
f = @(x) x^3 + 2*x^2 + 10*x - 20;
a = 0;
b = 1;
eps_f = 10e-10;
eps_x = 10e-10;
maxits = 100;
[x, n, error] = biseccion(f,a,b,eps_x, eps_f, maxits)
function [x,n,error] = biseccion(f,a,b,eps_x, eps_f, maxits);
x0 = a;
x1 = b;
n = 0;
error (1) = abs(x1-x0);
while n < maxits && (error(n+1) > eps_x || abs(f(x0)) > eps_f)
x = 0.5 * (x0 + x1);
if f(x0)*f(x) < 0
x1 = x;
else
x0 = x;
end
n = n+1;
error(n+1) = abs(x1-x0);
end
end
0 comentarios
Respuesta aceptada
John D'Errico
el 6 de Abr. de 2023
Editada: John D'Errico
el 6 de Abr. de 2023
Get used to using the dotted operators for some things. That allows MATLAB to use vectorization in tools like fplot.
f = @(x) x.^3 + 2*x.^2 + 10*x - 20;
a = 0;
b = 1;
But the big problem is in f, and your limits.
fplot(f,[a,b])
grid on
Do you see a zero crossing in that interval? I don't.
Bisection CANNOT find a root in an interval where no root exists.
If you expand the interval, you might find it works better.
fplot(f,[0,2])
grid on
yline(0,'r')
A basic rule of using MATLAB is to plot EVERYTHING. Then plot something else. Then think about what you see. Do all of this before you just run code blindly.
Más respuestas (0)
Ver también
Categorías
Más información sobre NaNs en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

