Why that number of anchor boxes?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Adrian Kleffler
el 29 de Mayo de 2023
Respondida: Birju Patel
el 1 de Jun. de 2023
Hello guys, I just want someone to explain like in general why in this example : https://www.mathworks.com/help/vision/ug/object-detection-using-yolov4-deep-learning.html they defined number of anchor boxes = 9...
and in this example https://www.mathworks.com/help/vision/ug/object-detection-using-faster-r-cnn-deep-learning.html they defined number of anchor boxes = 3...
Can someone tell me why did they use different number of anchor boxes?
Thanks for any response :)
0 comentarios
Respuesta aceptada
Birju Patel
el 1 de Jun. de 2023
There isn't any rhyme or reason for these values. The examples need to be updated to provide more details on how to choose anchor boxes. I apologize for the confusion.
How you pick anchor boxes depends on your data.
As a first step, use this example to help you estimate the number and size of anchor boxes that would work well for your data:
There will be a trade off between the number of anchor boxes and the complexity of the network. You should run experiments with different anchor boxes to zero in on the optimal values for your application.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Image Processing and Computer Vision en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!