Find the optimal value to maximize a function
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hadeel Obaid
el 22 de Ag. de 2023
Comentada: Mathieu NOE
el 28 de Ag. de 2023
Hi everyone.....could anyone help......I need to find th optimal value of x0 and x1 to maximize R, where x1=d-x0..........the function MATLAB code:
close all; clear all; clc;
% System parameters
F = 10000; % Number of files
S = 100; % SBS cache capacity (set to 100)
M = 50; % Cash capacity fraction
alpha = 2; % Path loss exponent for LOS link
c = 3e8; % Light speed
fr = 1e12; % Operating frequency
B = 10e6; % System bandwidth
epsilon = 0.8; % Skewness factor
K = 0.0016; % Molecular absorption coefficient
P_M = 10^(64/10); % Transmit power MBS
P_S = 10^(30/10); % Transmit power SBS
sigma = 10^(-90/10); % Noise power
N_L = 512;
N_M = 16;
eta = 1;
x2 =30; % RIS-MBS distance
d_range = 1:1:40;
R = zeros(size(d_range));
for i = 1:length(d_range)
d = d_range(i);
sum1 = 0;
for f = 1:F
sum1 = sum1 + f^(-epsilon);
end
sum2 = 0;
for f = 1:M
sum2 = sum2 + f^(-epsilon)/sum1;
end
sum3 = 0;
for f = (M + 1):(M + (S - M) / eta)
sum3 = sum3 + (f^(-epsilon)) / sum1;
end
sum3 = sum3 * eta;
beta = (c/(4*pi*fr))^2; % Spreading loss index
Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma);
Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma);
Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3));
R(i) = Rt;
end
figure
plot(d_range, R, 'b^-')
xlabel('SBS-RIS Distance, d')
ylabel('Achievable Rate')
0 comentarios
Respuesta aceptada
Mathieu NOE
el 23 de Ag. de 2023
Hi
seems to me that R curves goes up as x0 goes closer to zero (but not rqual to zero otherwise you get Inf values)
also all the small for loops to create the sum1, sum2,sum3 variables can be replaced with sum function directly
close all; clear all; clc;
x0_range = [0.01 0.25 0.5 1];
% System parameters
F = 10000; % Number of files
S = 100; % SBS cache capacity (set to 100)
M = 50; % Cash capacity fraction
alpha = 2; % Path loss exponent for LOS link
c = 3e8; % Light speed
fr = 1e12; % Operating frequency
B = 10e6; % System bandwidth
epsilon = 0.8; % Skewness factor
K = 0.0016; % Molecular absorption coefficient
P_M = 10^(64/10); % Transmit power MBS
P_S = 10^(30/10); % Transmit power SBS
sigma = 10^(-90/10); % Noise power
N_L = 512;
N_M = 16;
eta = 1;
x2 =30; % RIS-MBS distance
d_range = 1:1:40;
R = zeros(numel(d_range),numel(x0_range));
for k = 1:numel(x0_range)
x0 = x0_range(k);
for i = 1:length(d_range)
d = d_range(i);
x1 = d-x0; % added line
% sum1 = 0;
% for f = 1:F
% sum1 = sum1 + f^(-epsilon);
% end
f = 1:F;
sum1 = sum(f.^(-epsilon));
% sum2 = 0;
% for f = 1:M
% sum2 = sum2 + f^(-epsilon)/sum1;
% end
f = 1:M;
sum2 = sum(f.^(-epsilon))/sum1;
% sum3 = 0;
% for f = (M + 1):(M + (S - M) / eta)
% sum3 = sum3 + (f^(-epsilon)) / sum1;
% end
% sum3 = sum3 * eta;
f = (M + 1):(M + (S - M) / eta);
sum3 = eta*sum(f.^(-epsilon))/sum1;
beta = (c/(4*pi*fr))^2; % Spreading loss index
Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma);
Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma);
Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3));
R(i,k) = Rt;
leg{k} = ['x0 = ' num2str(x0)];
end
end
plot(d_range, R, '^-')
legend(leg)
xlabel('SBS-RIS Distance, d')
ylabel('Achievable Rate')
8 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Get Started with Problem-Based Optimization and Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!