Borrar filtros
Borrar filtros

plot strain ellipse and principal stress axes using eigenvalues and eigevectors.

12 visualizaciones (últimos 30 días)
Hello,
I am trying to plot strain ellipses and principle stress axes (longest and shortest axes of the ellipse) on a grid (x_new,y_new) according to followig instructions. I would be really greatful if someone could help me complete this code.
Thank you.
x = -333.6:5:831.4; %(1x234)
y = 0:5:500; %(1x101)
[xx, yy] = meshgrid(x, y);
dx = 5;
dy = 5;
u = flow values of each grid node in x direction.
v = flow values of each grid node in y direction.
%% Plot Principle axes
pick the 4, center most u and v values. Using this 4 grid nodes u and v values we can compute ux, uy, vx, and vy values for the center point.
then using computed ux,uy, vx, vy values, ( e.g. ux=(u1+u2/dx) )
strain_tensor = [ux uy; vx vy];
[V,D]=eig(strain_tensor);
Now I want to use this eigenvalues and eigenvectors to plot strain ellipeses at the center of each four grid nodes along with quiver arrows inside the ellipses.
  2 comentarios
Matt J
Matt J el 8 de Dic. de 2023
What is supposed to be the relationship between the eigenvalues/vectors and the geometry of the ellipse?
Anitha Limann
Anitha Limann el 8 de Dic. de 2023
maximum eigen value is the length of the longest axis and minimum eigenvalue is the length of shortest axis. attached below is a theory slide for this.

Iniciar sesión para comentar.

Respuestas (1)

Matt J
Matt J el 8 de Dic. de 2023
a=10; %long axis
b=3; %short axis
theta=30; %rotation angle
p=rotate( scale(nsidedpoly(1000),[a,b]) ,theta);
plot(p)
  4 comentarios
Anitha Limann
Anitha Limann el 13 de Dic. de 2023
Editada: Matt J el 13 de Dic. de 2023
Hello,
I am so sorry to trouble you. but I still get the same error msg. Below is my complete code.
clearvars -except mv m
m=[0.0428602731501996 0; 0 -0.0159426987862691];
mv=[0.973953757211399 0.139025444512699; 0.226746728341998 0.990288809276388];
a = max(max(m)); % longest axis
b = min(min(m)); % shortest axis
theta1 = atan2(mv(1,2), mv(1,1))*180/pi; % angle between x-axis and largest eigenvalue
theta2 = atan2(mv(2,2), mv(2,1))*180/pi; % angle between x-axis and smallest eigenvalue
scale =2;
p=rotate(scale(nsidedpoly(1000),[a,b]),theta1);
Unable to use a value of type polyshape as an index.
figure
plot(p)
Matt J
Matt J el 13 de Dic. de 2023
Editada: Matt J el 13 de Dic. de 2023
The line scale =2 serves no apparent purpose and should probably be removed. Also, your [a,b] should both be positive numbers.

Iniciar sesión para comentar.

Categorías

Más información sobre Vector Fields en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by