How to evaluate a symbolic expression having `max` and `diff`?
    4 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
I have calculated the jacobian of two functions where variables are x1, x2, x3.
The jacobian is as follows-
JacobianF =
[                                            diff(max([0, (7*sin(4*pi*x1))/10], [], 2, 'omitnan', ~in(x1, 'real')), x1) + 96*pi*cos(6*pi*x1)*(x3 + sin(6*pi*x1)) + 160*3^(1/2)*pi^2*cos(6*pi*x1)*sin((3^(1/2)*pi*(20*x3 + 20*sin(6*pi*x1)))/3) + 1,                                                                                                                                                                                        0, 16*x3 + 16*sin(6*pi*x1) + diff(max([0, (7*sin(4*pi*x1))/10], [], 2, 'omitnan', ~in(x1, 'real')), x3) + (80*3^(1/2)*pi*sin((3^(1/2)*pi*(20*x3 + 20*sin(6*pi*x1)))/3))/3]
[diff(max([0, (7*sin(4*pi*x1))/10], [], 2, 'omitnan', ~in(x1, 'real')), x1) - 96*pi*cos((2*pi)/3 + 6*pi*x1)*(x2 - sin((2*pi)/3 + 6*pi*x1)) - 240*2^(1/2)*pi^2*cos((2*pi)/3 + 6*pi*x1)*sin((2^(1/2)*pi*(20*x2 - 20*sin((2*pi)/3 + 6*pi*x1)))/2) - 1, 16*x2 - 16*sin((2*pi)/3 + 6*pi*x1) + diff(max([0, (7*sin(4*pi*x1))/10], [], 2, 'omitnan', ~in(x1, 'real')), x2) + 40*2^(1/2)*pi*sin((2^(1/2)*pi*(20*x2 - 20*sin((2*pi)/3 + 6*pi*x1)))/2),                                                                                                                                                                      0]
Now, I need to evaluate this JacobianF at 
X = [0.2703    0.6193    0.9370];
where X(1) is x1 and so on.
To evaluate this JacobianF, I have used the following code-
Var_List = sym('x', [1, 3]);
df=double(subs(JacobianF, Var_List, X));
However, I get the following error. What is the cause of this error? How to resolve it and calculate the JacobianF at the specified position?
Error using symengine
Unable to convert expression containing remaining symbolic function calls into double array. Argument must be
expression that evaluates to number.
Error in sym/double (line 872)
Xstr = mupadmex('symobj::double', S.s, 0);
12 comentarios
  Torsten
      
      
 el 2 de En. de 2024
				Use
min(x,0) = 0.5*(x-abs(x))
as I used 
max(x,0) = 0.5*(x+abs(x))
below.
  Walter Roberson
      
      
 el 4 de En. de 2024
				Looks like it works for me when y is symbolic.
syms y
b_flat(y, 1, 2, 3)
b_flat(y, -10, 5, 17)
function Output = b_flat(y,A,B,C)
    Output = A+piecewise(0<=floor(y-B),0,floor(y-B))*A.*(B-y)/B-piecewise(0<=floor(C-y),0,floor(C-y))*(1-A).*(y-C)/(1-C);
    Output = round(Output*1e4)/1e4;
end
Respuestas (2)
  Walter Roberson
      
      
 el 1 de En. de 2024
        The derivative of max() is not generally defined.
You would probably have more success if you defined in terms of piecewise() instead of in terms of max()
1 comentario
  Dyuman Joshi
      
      
 el 4 de En. de 2024
				I guess the Sym engine does not have the ability to recognise that the definition of max() can be broken into a piecewise definition, than a derivative can be calculated.
I wonder if that is possible to implement or not.
  Torsten
      
      
 el 1 de En. de 2024
        
      Editada: Torsten
      
      
 el 2 de En. de 2024
  
      Use 
max(x,0) = 0.5*(abs(x)+x)
for real x.
syms x1
f1 = max([0, (7*sin(4*pi*x1))/10], [], 2, 'omitnan', ~in(x1, 'real'))
f2 = 0.5*(abs(7*sin(4*pi*x1)/10)+7*sin(4*pi*x1)/10)
figure(1)
hold on
fplot(f1,[-0.5 0.25])
fplot(f2,[-0.5 0.25])
hold off
df1 = diff(f1,x1)
df2 = diff(f2,x1)
figure(2)
%fplot(df1,[-0.5 0.25])
fplot(df2,[-0.5 0.25])
0 comentarios
Ver también
Categorías
				Más información sobre Assumptions en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!







