whether meshes affect computational step lengths in pdepe

1 visualización (últimos 30 días)
feynman feynman
feynman feynman el 19 de En. de 2024
Editada: Torsten el 20 de En. de 2024
In pdepe the user specifies an xmesh and tmesh. Do these meshes affect what meshes and computational step lengths adopted by the solver and hence the error? In other words are the computational step lengths self adaptive as in ode23 etc?

Respuesta aceptada

Torsten
Torsten el 19 de En. de 2024
Editada: Torsten el 19 de En. de 2024
Adaptive in x: no. Adaptive in t: yes. Thus the x-mesh affects computational accuracy, the t-mesh not. The accuracy in t is influenced as usual by the relative and absolute tolerances in the "odeset".
  4 comentarios
feynman feynman
feynman feynman el 20 de En. de 2024
Maybe you are talking about accuracy rather than convergence? As I understand it spatial discretization affects accuracy but not convergence. To have two spatial discretization points over 100 m won't yield divergence if a fine mesh is convergent.
Torsten
Torsten el 20 de En. de 2024
Editada: Torsten el 20 de En. de 2024
A complicated profile of a function can only be reconstructed by its spatial derivatives if there are enough supporting points. Thus convergence to the solution of a complicated function can only be achieved if the x-mesh is chosen fine enough.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by