Prepare Fourier Amplitude Spectrum from ground motion record (Peak-Acceleration vs time-period)
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Prepare Fourier Amplitude Spectrum from ground motion record (Peak-Acceleration vs time-period) with the input .txt files which contains peak-acceleration in 1st column & time-period in 2nd column.
0 comentarios
Respuestas (1)
Star Strider
el 24 de Abr. de 2024
Perhaps this —
T1 = readtable('india.19911019...at_output.txt');
T1.Properties.VariableNames = {'Peak Acceleration','Time'}
[FTs1,Fv] = FFT1(T1.('Peak Acceleration'),T1.Time);
[PeakVal,idx] = max(abs(FTs1)*2);
fprintf('\nMaximum acceleration of about %.4f mm/s^2 occurs at about %0.4f Hz\n', PeakVal, Fv(idx))
figure
plot(Fv, abs(FTs1)*2)
grid
xlabel('Frequency')
ylabel('Magnitude')
function [FTs1,Fv] = FFT1(s,t)
t = t(:);
L = numel(t);
if size(s,2) == L
s = s.';
end
Fs = 1/mean(diff(t));
Fn = Fs/2;
NFFT = 2^nextpow2(L);
FTs = fft((s - mean(s)) .* hann(L).*ones(1,size(s,2)), NFFT)/sum(hann(L));
Fv = Fs*(0:(NFFT/2))/NFFT;
% Fv = linspace(0, 1, NFFT/2+1)*Fn;
Iv = 1:numel(Fv);
FTs1 = FTs(Iv,:);
end
Experiment!
.
4 comentarios
Star Strider
el 27 de Abr. de 2024
My pleasure!
I would not say that the response is completely different, however your non-MATLAB software gives a different magnitude result than my MATLAB code.
Taking ths of that result gives —
SeismoSignalVal = log10(1.4939)
MyCode = 10^(0.0585)
These are not strictly comparable, however they are reasonably close. I am not certain what the ‘SeismoSignal’ code does, or how it produces its Fourier transform results. It also appears to use a 25 Hz lowpass filter prior to calculating the Fourier transform, since there is no energy higher than that in the ‘SeismoSignal’ record. I did not use any filters in my code.
Also, the ‘SeismoSignal’ Bode magnitude plot uses a truncated logarithmic frequency axis. (I have reproduced that here.) My plot uses a simple linear frequency axis.
For all intents and purposes, the ‘SeismoSignal’ result and my result are the same.
My analysis —
figure
imshow(imread('Screenshot 202...27 092404.png'))
title('Image of the ‘SeismoSignal’ Fourier Magnitude Plot')
T2 = readtable('FAS_Ordinates.xlsx', 'VariableNamingRule','preserve')
VN2 = T2.Properties.VariableNames;
figure
plot(T2.Frequency, T2.('Fourier Amplitude'))
grid
xlabel(VN2{1})
ylabel(VN2{3})
title('Linear Frequency Axis')
[PeakVal,idx] = max(T2.('Fourier Amplitude'));
fprintf('\nMaximum acceleration of about %.4f mm/s^2 occurs at about %0.4f Hz\n', PeakVal, T2.Frequency(idx))
figure
semilogx(T2.Frequency, T2.('Fourier Amplitude'))
grid
xlabel(VN2{1})
ylabel(VN2{3})
title('Logarithmic Frequency Axis')
figure
semilogx(T2.Frequency, T2.('Fourier Amplitude'))
grid
xlabel(VN2{1})
ylabel(VN2{3})
xlim([1 max(T2.Frequency)])
title('Truncated Logarithmic Frequency Axis')
.
Ver también
Categorías
Más información sobre Spectral Measurements en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!