How to speed up this code?
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Dear All,
I have this code but when I run it it takes one day and half to run. How can I speed it up?
Best regards,
Ara
clear all;
clc;
% Set the folder path where the .nc files are located
folderPath = 'E:\data\podtc_apr';
% Get a list of all NetCDF files in the folder
fileList = dir(fullfile(folderPath, '*_nc'));
numFiles = numel(fileList);
% Initialize the data structures
data = cell(numFiles, 1);
dateArray = [];
typeArray = cell(numFiles, 1);
% Loop through each file
for fileIndex = 1:numFiles
% Read the NetCDF file
filePath = fullfile(folderPath, fileList(fileIndex).name);
% Read the data from the NetCDF file
ncinfo_struct = ncinfo(filePath);
if isfield(ncinfo_struct, 'Variables')
variable_names = {ncinfo_struct.Variables.Name};
if all(ismember({'time', 'TEC', 'S4', 'RFI', 'elevation', 'occheight', 'caL1_SNR', 'pL2_SNR', 'x_LEO', 'y_LEO', 'z_LEO', 'x_GPS', 'y_GPS', 'z_GPS'}, variable_names))
% Extract the date and type information from the file name
[~, filename, ~] = fileparts(fileList(fileIndex).name);
dateStr = regexp(filename, '\d{4}\.\d{3}', 'match', 'once');
typeStr = regexp(filename, 'G\d{2}|R\d{2}', 'match', 'once');
% Read the data from the NetCDF file
data{fileIndex}.time = ncread(filePath, 'time');
data{fileIndex}.TEC = ncread(filePath, 'TEC');
data{fileIndex}.S4 = ncread(filePath, 'S4');
data{fileIndex}.RFI = ncread(filePath, 'RFI');
data{fileIndex}.elevation = ncread(filePath, 'elevation');
data{fileIndex}.occheight = ncread(filePath, 'occheight');
data{fileIndex}.caL1_SNR = ncread(filePath, 'caL1_SNR');
data{fileIndex}.pL2_SNR = ncread(filePath, 'pL2_SNR');
data{fileIndex}.x_LEO = ncread(filePath, 'x_LEO');
data{fileIndex}.y_LEO = ncread(filePath, 'y_LEO');
data{fileIndex}.z_LEO = ncread(filePath, 'z_LEO');
data{fileIndex}.x_GPS = ncread(filePath, 'x_GPS');
data{fileIndex}.y_GPS = ncread(filePath, 'y_GPS');
data{fileIndex}.z_GPS = ncread(filePath, 'z_GPS');
% Store the date and type information
dateArray = [dateArray, str2double(dateStr)];
typeArray{fileIndex} = typeStr;
else
% Skip this file and move on to the next one
fprintf('File "%s" does not contain all the required variables. Skipping this file.\n', fileList(fileIndex).name);
continue;
end
else
% Skip this file and move on to the next one
fprintf('File "%s" does not contain the "Variables" field. Skipping this file.\n', fileList(fileIndex).name);
continue;
end
end
% Sort the data by date and type
[sortedDates, sortedIndices] = sort(dateArray);
sortedTypes = cellfun(@(x) x, typeArray(sortedIndices), 'UniformOutput', false);
% Create the sorted data structures
sortedData = cell(numFiles, 1);
for i = 1:numFiles
sortedData{i} = data{sortedIndices(i)};
end
% Save the data to a .mat file
save('podtc_apr_data.mat', 'sortedData', 'sortedDates', 'sortedTypes');
0 comentarios
Respuestas (1)
Matlab Pro
el 1 de Jul. de 2024
Hi @Ara
First of all - I would try to indentify the bottolenecks that consume the most time.
A good idea is to use Matlab's profiler
here is a simple example
function test_profiling()
profile on
my_time_consumng_method();
profile off
profile viewer
%----------------------------------
function my_time_consumng_method()
%% time consuming code
for i=1:4
magic(10e3);
end
I would suspect that bottlenecks would probably be the i/o operation
Cosider creating a "small scale" problem (smaller # of files, maybe even 1 file) - just for the profiling phase - to be short.
Then - think of a way to reduce the i/o issue time.
A possible solution: copying aherad all relevant files to a local drive and only then - read them from your local drive. Usually - this makes a big difference in matter of timing
Ver también
Categorías
Más información sobre NetCDF en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!