generate white noise signal with certain bandwidth?
19 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
ANAS HAMZAH
el 17 de Nov. de 2024 a las 11:35
Comentada: Star Strider
el 17 de Nov. de 2024 a las 13:22
i am trying to generate noise with 5uvrms and the frequncy bandwidth 100hz . then i want to add two noise block to calculate the total rms.
can any one help to generate this ?
0 comentarios
Respuestas (1)
Star Strider
el 17 de Nov. de 2024 a las 11:56
The filtered signal iis no longer a white-noise signal, although the original signal is.
Try this —
Fs = 1000; % Sampling Frequency (Hz)
t = linspace(0, 1E4-1, 1E4).'/Fs; % Time Vector
ns = randn(1E+4, 1); % Noise Signal
nsf = lowpass(ns, 100, Fs, ImpulseResponse='iir'); % Filter Noise Signal
[FTns,Fv] = FFT1(ns,t); % Fourier Transform Of Original Noise Signal
[FTnsf,Fv] = FFT1(nsf,t); % Fourier Transform Of Filtered Noise Signal
figure
tiledlayout(2,1)
nexttile
plot(Fv, abs(FTns)*2)
grid
title('Original')
nexttile
plot(Fv, abs(FTnsf)*2)
grid
title('Filtered')
function [FTs1,Fv] = FFT1(s,t)
% Arguments:
% s: Signal Vector Or Matrix
% t: Associated Time Vector
t = t(:);
L = numel(t);
if size(s,2) == L
s = s.';
end
Fs = 1/mean(diff(t));
Fn = Fs/2;
NFFT = 2^nextpow2(L);
FTs = fft((s - mean(s)) .* hann(L).*ones(1,size(s,2)), NFFT)/sum(hann(L));
Fv = Fs*(0:(NFFT/2))/NFFT;
% Fv = linspace(0, 1, NFFT/2+1)*Fn;
Iv = 1:numel(Fv);
Fv = Fv(:);
FTs1 = FTs(Iv,:);
end
.
3 comentarios
Star Strider
el 17 de Nov. de 2024 a las 13:22
You can also use —
Fs = 1000; % Sampling Frequency (Hz)
Fn = Fs/2;
Wp = 100/Fn; % Stopband Frequency (Normalised)
Ws = 101/Fn; % Passband Frequency (Normalised)
Rp = 1; % Passband Ripple
Rs = 60; % Passband Ripple (Attenuation)
[n,Wp] = ellipord(Wp,Ws,Rp,Rs); % Elliptic Order Calculation
[z,p,k] = ellip(n,Rp,Rs,Wp); % Elliptic Filter Design: Zero-Pole-Gain
[sos,g] = zp2sos(z,p,k);
t = linspace(0, 1E4-1, 1E4).'/Fs; % Time Vector
ns = randn(1E+4, 1); % Noise Signal
nsf = filtfilt(sos, g, ns); % Filter Noise Signal
[FTns,Fv] = FFT1(ns,t); % Fourier Transform Of Original Noise Signal
[FTnsf,Fv] = FFT1(nsf,t); % Fourier Transform Of Filtered Noise Signal
figure
tiledlayout(2,1)
nexttile
plot(Fv, abs(FTns)*2)
grid
title('Original')
nexttile
plot(Fv, abs(FTnsf)*2)
grid
title('Filtered')
function [FTs1,Fv] = FFT1(s,t)
% Arguments:
% s: Signal Vector Or Matrix
% t: Associated Time Vector
t = t(:);
L = numel(t);
if size(s,2) == L
s = s.';
end
Fs = 1/mean(diff(t));
Fn = Fs/2;
NFFT = 2^nextpow2(L);
FTs = fft((s - mean(s)) .* hann(L).*ones(1,size(s,2)), NFFT)/sum(hann(L));
Fv = Fs*(0:(NFFT/2))/NFFT;
% Fv = linspace(0, 1, NFFT/2+1)*Fn;
Iv = 1:numel(Fv);
Fv = Fv(:);
FTs1 = FTs(Iv,:);
end
Unless you also have the DSP System Toolbox, you may need to use the transfer function implementation (b,a vectors) for this filter, instead of the second-order-section implemntation I use here. It is relatively straightforward to change my code to create that. See the documentation on ellip for that information.
.
Ver también
Categorías
Más información sobre Single-Rate Filters en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!