Calculate PSD using FFT

302 visualizaciones (últimos 30 días)
Peppe
Peppe el 21 de Nov. de 2011
Editada: Aditya el 5 de Oct. de 2023
Hi, The question is to calculate PSD using FFT function in MATLAB. Ive already done it with pwelch command in MATLAB and now it's time to do it with FFT command and compare the results. If I have file named: file2.Mat which contains 3 columns. first column is time, second Force and the third is acceleration. the sampling is 4000Hz and the number of NFFT is ,let us say, 4444. I know that we need to multiply the window with time column. And then what?
Does anybody know how to do it? Ive been work on this for like 3 hours.
regards
  1 comentario
Noel Khan
Noel Khan el 16 de Oct. de 2020
Do you have the pwelch implementation? I would like to see how you got your estimate if you dont mind :)

Iniciar sesión para comentar.

Respuesta aceptada

Frantz Bouchereau
Frantz Bouchereau el 29 de Jul. de 2021
Here is a popular MATLAB doc page that explains the relationship between FFT and true power spectra: Power Spectral Density Estimates Using FFT.
  1 comentario
Aditya
Aditya el 5 de Oct. de 2023
Editada: Aditya el 5 de Oct. de 2023
This page appears to have a conceptual error in the first example. Amplitudes must be multiplied by two before taking one-sided PSD (as pointed out in reply by Chris Schwarz on 27 Aug 2020). Can the documentation be fixed?

Iniciar sesión para comentar.

Más respuestas (4)

Wayne King
Wayne King el 21 de Nov. de 2011
The PSD is an even function of frequency, so you only need from 0 to the Nyquist, if you want to conserve the total power, you have to multiply all frequencies except 0 and the Nyquist by two if you only keep 1/2 the frequencies. 0 and the Nyquist only occur once in the PSD estimate, all other frequencies occur twice. If you look at the example I gave you, then you see it agrees with the scaling in MATLAB's periodogram.
The answer about multiplying by a window, Hanning, Hamming, Blackman, Tukey. etc. is that it depends. A window reduces the bias in the periodogram, but that comes at the cost of reduced frequency resolution (a broader main lobe).

Wayne King
Wayne King el 21 de Nov. de 2011
Why don't you just use spectrum.periodogram?
Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*100*t)+randn(size(t));
plot(psd(spectrum.periodogram,x,'Fs',Fs,'NFFT',length(x)));
If you want to do it simply with fft()
xdft = fft(x);
xdft = xdft(1:length(x)/2+1);
xdft(2:end-1) = 2*xdft(2:end-1);
psdest = 1/(length(x)*Fs)*abs(xdft).^2;
freq = 0:Fs/length(x):Fs/2;
plot(freq,10*log10(psdest));
grid on;
Compare the plots.
  2 comentarios
Wayne King
Wayne King el 21 de Nov. de 2011
If you want to use a window, like Hamming, etc. You can do:
plot(psd(spectrum.periodogram('Hamming'),x,'Fs',Fs,'NFFT',length(x)));
Chappi
Chappi el 17 de Dic. de 2019
Hi, can I ask about how you can apply Hamming window using FFT method? I dont have Signal Processing Tool so I can not use periodogram function. Thank you

Iniciar sesión para comentar.


Peppe
Peppe el 21 de Nov. de 2011
Why xdft = xdft(1:length(x)/2+1); % what does that mean? xdft(2:end-1) = 2*xdft(2:end-1); %? dubbel side? and why?
I dont understand these two lines psdest = 1/(length(x)*Fs)*abs(xdft).^2; freq = 0:Fs/length(x):Fs/2;
  1 comentario
Peppe
Peppe el 21 de Nov. de 2011
Shouldnt I multiply the hanning windows with my time vector?

Iniciar sesión para comentar.


Chris Schwarz
Chris Schwarz el 27 de Ag. de 2020
An adjustment to Wayne's code that gives an exact match to the periodogram is:
Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*100*t)+randn(size(t));
plot(psd(spectrum.periodogram,x,'Fs',Fs,'NFFT',length(x)));
xdft = fft(x);
xdft = xdft(1:length(x)/2+1);
xdft(2:end-1) = 2*xdft(2:end-1);
freq = 0:Fs/length(x):Fs/2;
df = diff(freq);
df = df(1);
% psdest = 1/(length(x)*Fs)*abs(xdft).^2; % original
psdest = abs(xdft/length(x)).^2/(2*df); % modified
hold on
plot(freq,10*log10(psdest),'r');
grid on;
  2 comentarios
PK
PK el 18 de En. de 2021
psdest = abs(xdft/length(x)).^2/(2*df); % modified
why '2*df'? For the zero frequency also 2*df?
Thanks
karinkan
karinkan el 7 de Mzo. de 2021
close all
Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*100*t)+randn(size(t));
L =length(x);
NFFT = 2^nextpow2(L);
plot(psd(spectrum.periodogram,x,'Fs',Fs,'NFFT',NFFT));
df = Fs/NFFT;
freq = 0:df:Fs/2;
xdft = fft(x,NFFT);
xdft_s = xdft(1:NFFT/2+1);
amp = abs(xdft_s)/NFFT;
psdest = amp.^2/(df); % original
psdest(2:end-1) = 2*psdest(2:end-1);
hold on
plot(freq,10*log10(psdest),'r');
grid on;

Iniciar sesión para comentar.

Categorías

Más información sobre Spectral Estimation en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by