Borrar filtros
Borrar filtros

using a trained ANN

4 visualizaciones (últimos 30 días)
farheen asdf
farheen asdf el 3 de Jul. de 2015
Comentada: 인국 강 el 17 de Nov. de 2022
hi all. I have trained a pattern recognition neural network and have gotten good results (87%). Although, i'm still confused as to how I actually use it in real life. For example, every time i run my network i have to train it and sometimes it takes more than a few tries to get to 87% accuracy. At times the accuracy is as bad as 26%. So my question is, how do i make sure my network remembers what it has learned? I want to save my networks memory when i get 87% accuracy. How do i do that? Second, i was wondering if i could use this network to find the class of an unknown image which i select at runtime. I've used indexing method to separate the training, validation and test data so that the network tests only the images i want it to. Thanks in advance. Have a nice day :)
  1 comentario
인국 강
인국 강 el 17 de Nov. de 2022
how do you run your ann model? because i have no idea

Iniciar sesión para comentar.

Respuesta aceptada

Greg Heath
Greg Heath el 3 de Jul. de 2015
% FITNET REUSE EXAMPLE:
% Train in workspace
% Save copy to directory
% Clear original from workspace
% Load copy from directory to workspace
% Use copy on "new" data
% If it exists, delete netg from the directory
delete netg.mat
% Clear the workspace and plot before designing netg
close all, clear all, clc
[ x,t ] = simplefit_dataset;
[ I N ] = size(x) %[1 94]
[ O N ] = size(t) %[1 94]
MSE00 = mean(var(t',1))% 8.3378
subplot(2,1,1), hold on
plot(x,'k'), plot(t,'b')
subplot(2,1,2), hold on
plot(x,t,'b')
% NOTE: t has 4 local extrema
netg = fitnet(4);
rng(4151941)
[ netg tr y e ] = train(netg,x,t);
% y = netg(x); e = t-y;
stopcriteria = tr.stop % Validation stop
NMSE = mse(e)/MSE00 % 5.8958e-3
R2 = 1-NMSE % 0.9941
plot(x,y,'r')
' netg is in workspace'
whos netg
'netg is not in directory'
dir netg
dir netg.mat
'Save copy of netg to directory. Becomes netg.mat'
save( 'netg')
dir netg.mat
'Next clear original netg from workspace'
whos netg
clear netg
whos netg
'Then load copy of netg from directory to workspace'
load netg
whos netg
'Delete copy of netg from directory'
dir netg.mat
delete netg.mat
dir netg.mat
'Apply netg copy in workspace to "new" data'
ylr = netg(fliplr(x));
diffy = minmax(ylr-fliplr(y)) % [ 0 0 ]
Hope this helps.
Thank you for formally accepting my answer
Greg
  4 comentarios
farheen asdf
farheen asdf el 4 de Jul. de 2015
ylr = netg(fliplr(x));
diffy = minmax(ylr-fliplr(y)) % [ 0 0 ]
is this the code for applying the network to new data? here x will be the features of the new image correct? and y is what?
Greg Heath
Greg Heath el 9 de Jul. de 2015
ynew = net(xnew);
I just used xnew = fliplr(x), ynew = ylr for convenience
y is defined above

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by