Borrar filtros
Borrar filtros

I will appreciate any suggestion on how I could have a solution to this.

1 visualización (últimos 30 días)
SX=1000*[1 2 3];
SY=2000*[1.5 2 3];
SXY = 1258[1 2 3];
a = [0.3 0.6 0.9];
syms rb
for j=1:1:3
if pwmid(j)<=pwc(j)
SRR(j)=0.5*(SX(j)+SY(j)).*(1-(a(j).^2)/rb^2)+0.5*(SX(j)-SY(j)).*(1+(3*a(j).^4/rb^4)-(4*a(j).^2/rb^2))*cos(2*thbkso(j))...
+SXY(j).*(1+(3*a(j).^4/rb^4)-(4*a(j).^2/rb^2))*sin(2*thbkso(j))+(a(j).^2/rb^2).*pwmid(j);
STT(j)=0.5*(SX(j)+SY(j)).*(1+(a(j).^2)/rb^2)-0.5*(SX(j)-SY(j)).*(1+(3*a(j).^4/rb^4))*cos(2*thbkso(j))...
-SXY(j).*(1+(3*a(j).^4/rb^4))*sin(2*thbkso(j))-(a(j).^2/rb^2).*pwmid(j);
SRT(j)=(0.5*(SX(j)-SY(j)).*sin(2*thbkso(j))+SXY(j).*cos(2*thbkso(j))).*(1-(3*a(j).^4/rb^4)+(2*a(j).^2/rb^2));
SIGMA1A(j)=0.5*(STT(j)+SRR(j))+0.5*((STT(j)-SRR(j)).^2+4*SRT(j).^2).^0.5;
SIGMA3A(j)=0.5*(STT(j)+SRR(j))-0.5*((STT(j)-SRR(j)).^2+4*SRT(j).^2).^0.5;
C0FUN(j)=SIGMA1A(j)-SIGMA3A(j);
rbsoln{j}=double(vpasolve(C0FUN(j)==C0(j),rb));
cell(rbsoln);
rw(j)=rbsoln{j}(1);
rbkt_art(j) = rbsoln{j}(1)-a(j);
else
rw(j)=a(j);
rbkt_art(j)=rbkt_int(j);
end
end
  8 comentarios
Isaac
Isaac el 13 de Ag. de 2015
Sorry
SXY = 125*[1 2 3]; C0 = 100*[1 2 3];
Thanks

Iniciar sesión para comentar.

Respuestas (3)

Isaac
Isaac el 13 de Ag. de 2015
Sorry
SXY = 125*[1 2 3]; C0 = 100*[1 2 3];
Thanks

Walter Roberson
Walter Roberson el 13 de Ag. de 2015
All solutions to those equations are strictly imaginary for the parameters you give.
For example, for j = 1, the solutions are
(3/10)*sqrt(5)*sqrt(roots([+8105,-9500,+4790,-1164,+117]))
and the negatives of those.
  2 comentarios
Walter Roberson
Walter Roberson el 13 de Ag. de 2015
Please explain what you mean when you said you were concerned about solve or vpasolve "not giving favorable results" ?
If you want all of the results, then you may have to use solve() instead of vpasolve(), and you might have to double() the result of solve() to get numeric values. I do not have the Symbolic Toolbox so I cannot check exactly what would be returned.
Walter Roberson
Walter Roberson el 14 de Ag. de 2015

I could have made a mistake along the way, but if I got it right then:

for j = 1 : 3
  A = 32 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) - 32 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j))^3 * SY(j) - 16 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) + 16 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j)) * SY(j) - C0(j)^2 + SX(j)^2 - 2 * SX(j) * SY(j) + 4 * SXY(j)^2 + SY(j)^2;
    B =  - 32 * cos(thbkso(j))^4 * SX(j)^2 * a(j)^2 + 64 * cos(thbkso(j))^4 * SX(j) * SY(j) * a(j)^2 + 128 * cos(thbkso(j))^4 * SXY(j)^2 * a(j)^2 - 32 * cos(thbkso(j))^4 * SY(j)^2 * a(j)^2 - 8 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) * SXY(j) * a(j)^2 - 8 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * SY(j) * a(j)^2 + 16 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * a(j)^2 * pwmid(j) + 28 * cos(thbkso(j))^2 * SX(j)^2 * a(j)^2 - 64 * cos(thbkso(j))^2 * SX(j) * SY(j) * a(j)^2 + 8 * cos(thbkso(j))^2 * SX(j) * a(j)^2 * pwmid(j) - 128 * cos(thbkso(j))^2 * SXY(j)^2 * a(j)^2 + 36 * cos(thbkso(j))^2 * SY(j)^2 * a(j)^2 - 8 * cos(thbkso(j))^2 * SY(j) * a(j)^2 * pwmid(j) - 2 * SX(j)^2 * a(j)^2 + 8 * SX(j) * SY(j) * a(j)^2 - 4 * SX(j) * a(j)^2 * pwmid(j) + 16 * SXY(j)^2 * a(j)^2 - 6 * SY(j)^2 * a(j)^2 + 4 * SY(j) * a(j)^2 * pwmid(j);
    C = 128 * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) * SXY(j) * a(j)^4 - 128 * sin(thbkso(j)) * cos(thbkso(j))^3 * SXY(j) * SY(j) * a(j)^4 + 48 * cos(thbkso(j))^4 * SX(j)^2 * a(j)^4 - 96 * cos(thbkso(j))^4 * SX(j) * SY(j) * a(j)^4 - 192 * cos(thbkso(j))^4 * SXY(j)^2 * a(j)^4 + 48 * cos(thbkso(j))^4 * SY(j)^2 * a(j)^4 - 48 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) * SXY(j) * a(j)^4 + 80 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * SY(j) * a(j)^4 - 32 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * a(j)^4 * pwmid(j) - 40 * cos(thbkso(j))^2 * SX(j)^2 * a(j)^4 + 96 * cos(thbkso(j))^2 * SX(j) * SY(j) * a(j)^4 - 16 * cos(thbkso(j))^2 * SX(j) * a(j)^4 * pwmid(j) + 192 * cos(thbkso(j))^2 * SXY(j)^2 * a(j)^4 - 56 * cos(thbkso(j))^2 * SY(j)^2 * a(j)^4 + 16 * cos(thbkso(j))^2 * SY(j) * a(j)^4 * pwmid(j) + 7 * SX(j)^2 * a(j)^4 - 18 * SX(j) * SY(j) * a(j)^4 + 4 * SX(j) * a(j)^4 * pwmid(j) - 8 * SXY(j)^2 * a(j)^4 + 15 * SY(j)^2 * a(j)^4 - 12 * SY(j) * a(j)^4 * pwmid(j) + 4 * a(j)^4 * pwmid(j)^2;
    E = 288 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) - 288 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j))^3 * SY(j) - 144 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) + 144 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j)) * SY(j) + 9 * SX(j)^2 * a(j)^8 - 18 * SY(j) * a(j)^8 * SX(j) + 36 * SXY(j)^2 * a(j)^8 + 9 * SY(j)^2 * a(j)^8;
    sols_plus = sqrt( roots([A, B, C, 0, E]) );
    sols{j} = [sols_plus; -sols_plus];
  end

I am not certain of these coefficients; I am concerned that the previous solution did not have a 0 in the x^1 position but this does.

Iniciar sesión para comentar.


Isaac
Isaac el 13 de Ag. de 2015
Thanks Walter...yes, the solutions are all imaginary with the current inputs

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by