Solving 2nd order ODE with various methods
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Okay the problem is of a free swinging pendulum with dampening which is modelled using the following equation:
Damping coefficient: c=1 s−1 Mass: m=1 kg Gravity: g=9.81 ms−1 Link length: l=0.5 m
We know θ(0)=90° and θ′(0)=0, solve this equation from t = 0 to t = 10 with a time interval of 0.01s
The equation is:
d2θ/dt2+(c/m)*(dθ/dt)+(g/l)*sin (θ)=0
So we need to use Euler,Heun and 4th order Runge-Kutta method
2. Relevant equations
3. The attempt at a solution
Okay so my idea was to create a function as so:
function xdot=pendemo(t,x)
% PENDEMO Pendulum ODE derivative evaluation
xdot(1,1) = x(2,1);
xdot(2,1) = -1/(1*1)*x(2,1) - 9.81/1*sin(x(1,1));
% End of pendemo.m
and than an m.file giving the above information:
xphi = [pi/2;0];
tphi = 0; 5 %start time
tfin = 10; %end time
[t,x] = ode45('pendemo',[tphi tfin],xphi);
plot(t,x(:,1))
The only thing is how do I implement a euler/heun method? What is a 4th order Runga Kata??
thanks
0 comentarios
Respuestas (1)
@Johannes
el 2 de Oct. de 2015
Hello,
in your example you are using ODE45 to solve your ode. ODE45 is a solver which is using the method of Runge Kutta (RKF45) to solve ode's. This means you are using already a Runge Kutta solver of the order 4. Explicit Euler and Heun are to be implemented by you as functions. For example use the equations form wikipedia.
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Heun%27s_method
Regards, John
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!