Solving 2nd order ODE with various methods

9 visualizaciones (últimos 30 días)
Steven
Steven el 2 de Oct. de 2015
Comentada: Steven el 2 de Oct. de 2015
Okay the problem is of a free swinging pendulum with dampening which is modelled using the following equation:
Damping coefficient: c=1 s−1 Mass: m=1 kg Gravity: g=9.81 ms−1 Link length: l=0.5 m
We know θ(0)=90° and θ′(0)=0, solve this equation from t = 0 to t = 10 with a time interval of 0.01s
The equation is:
d2θ/dt2+(c/m)*(dθ/dt)+(g/l)*sin (θ)=0
So we need to use Euler,Heun and 4th order Runge-Kutta method
2. Relevant equations
3. The attempt at a solution
Okay so my idea was to create a function as so:
function xdot=pendemo(t,x)
% PENDEMO Pendulum ODE derivative evaluation
xdot(1,1) = x(2,1);
xdot(2,1) = -1/(1*1)*x(2,1) - 9.81/1*sin(x(1,1));
% End of pendemo.m
and than an m.file giving the above information:
xphi = [pi/2;0];
tphi = 0; 5 %start time
tfin = 10; %end time
[t,x] = ode45('pendemo',[tphi tfin],xphi);
plot(t,x(:,1))
The only thing is how do I implement a euler/heun method? What is a 4th order Runga Kata??
thanks

Respuestas (1)

@Johannes
@Johannes el 2 de Oct. de 2015
Hello,
in your example you are using ODE45 to solve your ode. ODE45 is a solver which is using the method of Runge Kutta (RKF45) to solve ode's. This means you are using already a Runge Kutta solver of the order 4. Explicit Euler and Heun are to be implemented by you as functions. For example use the equations form wikipedia.
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Heun%27s_method
Regards, John
  1 comentario
Steven
Steven el 2 de Oct. de 2015
Okay this is my code for euler:
function [t,x] = euler(dydt,tspan,y0,h)
t = (tspan(1):h:tspan(2));
n=length(t);
y = y0*ones(n,1);
for i = 1:n-1
y(i+1)= y(i) + dydt(t(i), y(i))*(t(i+1)-t(i));
end
How can i apply it to my ODE?

Iniciar sesión para comentar.

Categorías

Más información sobre Programming en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by