Borrar filtros
Borrar filtros

to prove the robustness of neural network model what is the best model which can compare to it ? (especially in order to forecast)

2 visualizaciones (últimos 30 días)
to prove the robustness of neural network model what is the best model which can compare to it ?
can you propose a model?
THANKS

Respuesta aceptada

Greg Heath
Greg Heath el 18 de Nov. de 2015
No.
I measure robustness by adding increasing levels of noise to the input.
Hope this helps.
Greg
  2 comentarios
coqui
coqui el 3 de Dic. de 2015
can you explain more please.
I have five input series to predict only one series(predicted price).
For robustness checking, what I can do?
Greg Heath
Greg Heath el 5 de Dic. de 2015
Which timeseries function are you using? Timedelay, or Narx?
Either way, add noise at a fixed SNR to the input and plot output error vs SNR.
[I N ] = size(input0)
var0 = mean(var(input0'))
input = input0 + sqrt(var0/SNR)*randn(I,N);
Hope this helps.
Thank you for formally accepting my answer
Greg

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by