how to numerical solve d2y/dx2+f(x)dy/dx+y=0 in matlab. if f(x)=x^2+2x+1
16 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
solving ODE for boundary condition y(0)=1,y(2)=10
Respuestas (1)
Triveni
el 2 de En. de 2016
Editada: Triveni
el 2 de En. de 2016
syms x y;
f=x^2+2*x+1;
df= diff(f);
d2f = diff(df);
solution = d2f + f *(df) + y;
i don't know whya re are you using isequalto 0 in "d2y/dx2+f(x)dy/dx+y=0"
or
syms x y;
f=x^2+2*x+1;
dy = diff(y);
d2y = diff(dy);
solution = d2y + f* dy + y;
3 comentarios
Walter Roberson
el 3 de En. de 2016
Well the symbolic solution is
HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)*(x+1)) * (exp(-26/3) * HeunT(3^(2/3), -3, 0, 3^(2/3)) * (int(exp((1/3)* z1 * (z1^2 + 3*z1+3)) / HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3) * (z1+1))^2, z1, 0, 2)) - (int(exp((1/3) * z1*(z1^2+3*z1+3)) / HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)*(z1+1))^2, z1, 0, x)) * (exp(-26/3) * HeunT(3^(2/3), -3, 0, 3^(2/3)) - 10 * HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)))) * exp(-(1/3) *x * (x^2 + 3*x + 3)) / (exp(-26/3) * HeunT(3^(2/3), -3, 0, 3^(2/3)) * (int(exp((1/3)*z1 * (z1^2 + 3*z1+3)) / HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3) * (z1+1))^2, z1, 0, 2)) * HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)))
where z1 is a temporary variable of integration.
Notice the three unresolved integrals for which there is no known closed form solution. The symbolic solution might tell you what you need to calculate but it is not a numeric solution at all, and the original poster specifically asked for a numeric solution.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!