6 Simultaneous equations with 6 Unknowns
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Anie Ekpes
el 18 de En. de 2012
Please can someone help me with a MATLAB program that can solve 6 simultaneous euations with 6 unknowns using either crammer's rule or gauss elimination method. Thanks
Respuesta aceptada
the cyclist
el 18 de En. de 2012
Editada: John Kelly
el 26 de Feb. de 2015
I think you probably want to use the mldivide operator.
2 comentarios
MJTHDSN
el 12 de Abr. de 2018
Dear Matlabers,
I have a similar question. Let`s assume the equations as below:
SN = rnd(5,1); a = SN(1); b = SN(2); c = SN(3); d = SN(4); e = SN(5); f = SN(6);
eq1 = a*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(4)*x(5))+(x(5)^2)) == 0;
eq2 = b*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)+(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq3 = c*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)+(2*x(4)*x(5))+(x(5)^2)) == 0;
eq4 = d*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+ (x(4)^2)-(2*x(1)*x(4)*x(5))-(x(4)*x(5))+(x(5)^2)) == 0;
eq5 = e*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq6 = f*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)-(2*x(4)*x(5))+(x(5)^2)) == 0;
here, a,b,c,d,e,f are numbers (0.43 for example). For now I consider them as SN(i):
I want to find x(1),...,x(5) values.
I have tried many ways but no solution was found.
Would you mind to help me with my problem?
Best,
Más respuestas (0)
Ver también
Categorías
Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!