How to train a neural network to 0.1 error rate?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Omotayo Asiru
el 15 de En. de 2016
Comentada: Greg Heath
el 24 de En. de 2016
Hello,
I have written this code to train a neural network with 500 samples as the inputs and 32 attributes.Its a classification problem and i have two classes in the target.
net=fitnet(30,'trainlm');
net.divideParam.trainRatio=.7;
net.divideParam.valRatio=.15;
net.divideParam.testRatio=.15;
[net,tr] = train(net,input500',target500');
Output=net(sample')';
the code is working although the output of the sample isn't perfect yet. I need explanation on how i can calculate error rate after each epoch. Also i want the neural network to continue its training until the error rate is less than 0.1 Please how can i achieve this. Thanks in anticipation.
0 comentarios
Respuesta aceptada
Greg Heath
el 17 de En. de 2016
1. Error rate cannot be used as a training function because it is discontinuous.
2. PATTERNNET, the current default classification/pattern-recognition function, is more appropriate than FITNET which is designed for regression/curve-fitting. See the documentation
help patternnet
doc patternnet
2. For examples, search BOTH the NEWSGROUP and ANSWERS using
greg patternnet
3. For c classes, the c x N target matrix is obtained from the true class indices 1:c via IND2VEC. The estimated class indices are obtained from the output via VEC2IND. Class error rates are obtained by comparing true and estimated indices.
4. Since it is impossible to directly design for a given error rate, the best approach is, for a given number of hidden nodes, H, make multiple (e.g., Ntrials = 10) designs using different random initial weights.
5. To get a feel for it, start with default value H = 10. Then, use a for loop over H = Hmin:dH:Hmax to try to obtain the smallest value of H that will yield acceptable results. You will have to design at least
Ndesigns = Ntrials*numel(Hmin:dH:Hmax)
6. See previous posts and write back if you need help.
Hope this helps,
Thank you for formally accepting my answer
Greg
2 comentarios
Greg Heath
el 24 de En. de 2016
You haven't looked up any of my patternnet posts in either the NEWSGROUP or ANSWERS!!!
Más respuestas (0)
Ver también
Categorías
Más información sobre Modeling and Prediction with NARX and Time-Delay Networks en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!