how to implement neural network for eeg motor imagery classification?

3 visualizaciones (últimos 30 días)
I extracted a 140x16 feature table with each line representing the feature vector of one experiment.Also i have the class labels of the 140 experiments.My intention is to use a neural network to classify my experiments by using half or a percentage of them for training the network and the rest for classification.Can anyone guide me?

Respuesta aceptada

Greg Heath
Greg Heath el 3 de Abr. de 2016
If you have c classes, the target columns should be columns of the c-dimension unit matrix eye(c).
[ I N ] = size(input) % [ 16 140 ]
[ c N ] = size(target) % [c 140 ]
For classification tutorials and examples search BOTH the NEWSREADER and ANSWERS with
greg patternnet
For documentation and associated unsatisfactory examples:
help patternnet
doc patternnet
Hope this helps.
Thank you for formally accepting my answer
Greg

Más respuestas (0)

Comunidades de usuarios

Más respuestas en  Power Electronics Control

Categorías

Más información sobre EEG/MEG/ECoG en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by