In pattern recognition using neural network what should be the output?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Newman
el 9 de Jun. de 2016
Comentada: Greg Heath
el 13 de Jun. de 2016
Suppose I want to recognise a particular face I am extracting sift points from it and feeding it as a input vector . Then what should be the output ? I am talking during the training phase .
How are outputs decided for a particular type of input pattern?
0 comentarios
Respuesta aceptada
Greg Heath
el 11 de Jun. de 2016
% For c classification categories numbered 1:c, use a classindex row vector
classind = [ 5 3 1 4 2 5 4 3 2 1 ]
N = length(classind)
% The corresponding target matrix is obtained using the ind2vec command
target = full(ind2vec(classind))
% The corresponding output will be a matrix of the same size
outind = vec2ind(output)
err = outind ~= classind
Nerr = sum(err)
PctErr = 100*Nerr/N
%Obviously, more is needed to obtain error rates for individual classes.
A search of both the NEWSGROUP and ANSWERS using
greg patternnet
should yield details.
Hope this helps.
Thank you for formally accepting my answer.
Greg
2 comentarios
Greg Heath
el 13 de Jun. de 2016
Whatever you want to classify.
The face is that of Karen
or
the face has a scar under the left eye?
Greg
Más respuestas (0)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!