how to defined popuation in this code?

1 visualización (últimos 30 días)
Quynh tran
Quynh tran el 2 de Mayo de 2017
Comentada: Jan el 3 de Mayo de 2017
Dear all, I have this code. I want to change it to firefly algorithm. Could you help me to defind the population for this case. Thanks.
global busdata linedata gencost
options = gaoptimset;
options = gaoptimset('PopulationSize', 50,'Display','iter','Generations', 200,'StallGenLimit',100,'TimeLimit', 300,'StallTimeLimit', 300,'PlotFcns', {@gaplotbestf,@gaplotbestindiv});
[x ff]=ga(@opf1,5,options);
[F Pgg vv TL]=opf1(x)
function [F1 Pgg vv TL]=opf1(x) % x=[0.5 0.5 0.5 0.5 0.5];
% IEEE 30-BUS TEST SYSTEM (American Electric Power)
% Bus Bus Voltage Angle ---Load---- -------Generator----- Injected
% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
busdata=[1 1 1.06 0.0 0.0 0.0 0.0 0.0 0 0 0 2 2 1.043 0.0 21.70 12.7 40.0 0.0 -40 50 0 3 0 1.0 0.0 2.4 1.2 0.0 0.0 0 0 0 4 0 1.06 0.0 7.6 1.6 0.0 0.0 0 0 0 5 2 1.01 0.0 94.2 19.0 0.0 0.0 -40 40 0 6 0 1.0 0.0 0.0 0.0 0.0 0.0 0 0 0 7 0 1.0 0.0 22.8 10.9 0.0 0.0 0 0 0 8 2 1.01 0.0 30.0 30.0 0.0 0.0 -10 60 0 9 0 1.0 0.0 0.0 0.0 0.0 0.0 0 0 0 10 0 1.0 0.0 5.8 2.0 0.0 0.0 -6 24 19 11 2 1.082 0.0 0.0 0.0 0.0 0.0 0 0 0 12 0 1.0 0 11.2 7.5 0 0 0 0 0 13 2 1.071 0 0 0.0 0 0 -6 24 0 14 0 1 0 6.2 1.6 0 0 0 0 0 15 0 1 0 8.2 2.5 0 0 0 0 0 16 0 1 0 3.5 1.8 0 0 0 0 0 17 0 1 0 9.0 5.8 0 0 0 0 0 18 0 1 0 3.2 0.9 0 0 0 0 0 19 0 1 0 9.5 3.4 0 0 0 0 0 20 0 1 0 2.2 0.7 0 0 0 0 0 21 0 1 0 17.5 11.2 0 0 0 0 0 22 0 1 0 0 0.0 0 0 0 0 0 23 0 1 0 3.2 1.6 0 0 0 0 0 24 0 1 0 8.7 6.7 0 0 0 0 4.3 25 0 1 0 0 0.0 0 0 0 0 0 26 0 1 0 3.5 2.3 0 0 0 0 0 27 0 1 0 0 0.0 0 0 0 0 0 28 0 1 0 0 0.0 0 0 0 0 0 29 0 1 0 2.4 0.9 0 0 0 0 0 30 0 1 0 10.6 1.9 0 0 0 0 0];
% Line code % Bus bus R X 1/2 B = 1 for lines % nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl linedata=[1 2 0.0192 0.0575 0.02640 1 1 3 0.0452 0.1852 0.02040 1 2 4 0.0570 0.1737 0.01840 1 3 4 0.0132 0.0379 0.00420 1 2 5 0.0472 0.1983 0.02090 1 2 6 0.0581 0.1763 0.01870 1 4 6 0.0119 0.0414 0.00450 1 5 7 0.0460 0.1160 0.01020 1 6 7 0.0267 0.0820 0.00850 1 6 8 0.0120 0.0420 0.00450 1 6 9 0.0 0.2080 0.0 0.978 6 10 0 .5560 0 0.969 9 11 0 .2080 0 1 9 10 0 .1100 0 1 4 12 0 .2560 0 0.932 12 13 0 .1400 0 1 12 14 .1231 .2559 0 1 12 15 .0662 .1304 0 1 12 16 .0945 .1987 0 1 14 15 .2210 .1997 0 1 16 17 .0824 .1923 0 1 15 18 .1073 .2185 0 1 18 19 .0639 .1292 0 1 19 20 .0340 .0680 0 1 10 20 .0936 .2090 0 1 10 17 .0324 .0845 0 1 10 21 .0348 .0749 0 1 10 22 .0727 .1499 0 1 21 22 .0116 .0236 0 1 15 23 .1000 .2020 0 1 22 24 .1150 .1790 0 1 23 24 .1320 .2700 0 1 24 25 .1885 .3292 0 1 25 26 .2544 .3800 0 1 25 27 .1093 .2087 0 1 28 27 0 .3960 0 0.968 27 29 .2198 .4153 0 1 27 30 .3202 .6027 0 1 29 30 .2399 .4533 0 1 8 28 .0636 .2000 0.0214 1 6 28 .0169 .0599 0.065 1]; gencost = [1 0.00375 2 0 50 200; 2 0.0175 1.75 0 20 80; 5 0.0625 1 0 15 50; 8 0.0083 3.25 0 10 35; 11 0.025 3 0 10 30; 13 0.025 3 0 12 40];
% formation of Y bus
j=sqrt(-1);
nl = linedata(:,1); nr = linedata(:,2); R = linedata(:,3);
X = linedata(:,4); Bc = j*linedata(:,5); a = linedata(:, 6);
nbr=length(linedata(:,1)); nbus = max(max(nl), max(nr));
Z = R + j*X; y= ones(nbr,1)./Z; %branch admittance
for n = 1:nbr
if a(n) <= 0 a(n) = 1; else end
Ybus=zeros(nbus,nbus); % initialize Ybus to zero
% formation of the off diagonal elements
for k=1:nbr;
Ybus(nl(k),nr(k))=Ybus(nl(k),nr(k))-y(k)/a(k);
Ybus(nr(k),nl(k))=Ybus(nl(k),nr(k));
end
end
% formation of the diagonal elements
for n=1:nbus
for k=1:nbr
if nl(k)==n
Ybus(n,n) = Ybus(n,n)+y(k)/(a(k)^2) + Bc(k);
elseif nr(k)==n
Ybus(n,n) = Ybus(n,n)+y(k) +Bc(k);
else, end
end
end
nn1=length(gencost(:,1));
for ii=1:nn1-1
if x(ii)>1
x(ii)=1;
else
end
y1(ii)=gencost(ii+1,5)+x(ii)*(gencost(ii+1,6)-gencost(ii+1,5));
end
for i=1:nn1-1;
xx=gencost(i+1,1);
busdata(xx,7)=y1(i);
end
basemva = 100; accuracy = 0.002; maxiter =5;
ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0;
nbus = length(busdata(:,1));
for k=1:nbus
n=busdata(k,1);
kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4);
Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,8);
Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10);
Qsh(n)=busdata(k, 11);
if Vm(n) <= 0 Vm(n) = 1.0; V(n) = 1 + j*0;
else delta(n) = pi/180*delta(n);
V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n)));
P(n)=(Pg(n)-Pd(n))/basemva;
Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva;
S(n) = P(n) + j*Q(n);
end
end
for k=1:nbus
if kb(k) == 1, ns = ns+1; else, end
if kb(k) == 2 ng = ng+1; else, end
ngs(k) = ng;
nss(k) = ns;
end
Ym=abs(Ybus); t = angle(Ybus);
m=2*nbus-ng-2*ns;
maxerror = 1; converge=1;
iter = 0;
% Start of iterations
clear A DC J DX
while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch
for i=1:m
for k=1:m
A(i,k)=0; %Initializing Jacobian matrix
end, end
iter = iter+1;
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
J11=0; J22=0; J33=0; J44=0;
for i=1:nbr
if nl(i) == n | nr(i) == n
if nl(i) == n, l = nr(i); end
if nr(i) == n, l = nl(i); end
J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
if kb(n)~=1
J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
else, end
if kb(n) ~= 1 & kb(l) ~=1
lk = nbus+l-ngs(l)-nss(l)-ns;
ll = l -nss(l);
% off diagonalelements of J1
A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
if kb(l) == 0 % off diagonal elements of J2
A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end
if kb(n) == 0 % off diagonal elements of J3
A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); end
if kb(n) == 0 & kb(l) == 0 % off diagonal elements of J4
A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end
else end
else , end
end
Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33;
Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11;
if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end % Swing bus P
if kb(n) == 2 Q(n)=Qk;
if Qmax(n) ~= 0
Qgc = Q(n)*basemva + Qd(n) - Qsh(n);
if iter <= 7 % Between the 2th & 6th iterations
if iter > 2 % the Mvar of generator buses are
if Qgc < Qmin(n), % tested. If not within limits Vm(n)
Vm(n) = Vm(n) + 0.01; % is changed in steps of 0.01 pu to
elseif Qgc > Qmax(n), % bring the generator Mvar within
Vm(n) = Vm(n) - 0.01;end % the specified limits.
else, end
else,end
else,end
end
if kb(n) ~= 1
A(nn,nn) = J11; %diagonal elements of J1
DC(nn) = P(n)-Pk;
end
if kb(n) == 0
A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22; %diagonal elements of J2
A(lm,nn)= J33; %diagonal elements of J3
A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44; %diagonal of elements of J4
DC(lm) = Q(n)-Qk;
end
end
DX=A\DC';
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
if kb(n) ~= 1
delta(n) = delta(n)+DX(nn); end
if kb(n) == 0
Vm(n)=Vm(n)+DX(lm); end
end
maxerror=max(abs(DC));
end
V = Vm.*cos(delta)+j*Vm.*sin(delta);
deltad=180/pi*delta;
i=sqrt(-1);
k=0;
for n = 1:nbus
if kb(n) == 1
k=k+1;
S(n)= P(n)+j*Q(n);
Pg(n) = P(n)*basemva + Pd(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); %june 97
elseif kb(n) ==2
k=k+1;
S(n)=P(n)+j*Q(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); % June 1997
end
yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2);
end
busdata(:,3)=Vm'; busdata(:,4)=deltad';
Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh);
if Pgg(1)>gencost(1,6);
Pgg(1)=gencost(1,6);
else
end
% Pdt=283.4;
TL=basemva*sum(P);
Pgg=abs(Pgg);
lam=100*abs(sum(Pgg)-TL-Pdt);
P1=Pgg;
a1=gencost(:,2);
b1=gencost(:,3);
c1=gencost(:,4);
F1=(Pgg.*Pgg)*a1+Pgg*b1+sum(c1)+lam; %cost
vv=abs(V);

Respuestas (0)

Categorías

Más información sobre Particle & Nuclear Physics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by