How to create a multivariate gaussian mixture model??
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
[counts,binLocations] = imhist(X);
stem(binLocations, counts, 'MarkerSize', 1 );
xlim([-1 1]);
% inital kmeans step used to initialize EM
K = 2; % number of mixtures/clusters
rng('default');
cInd = kmeans(X(:), K,'MaxIter', 75536);
% fit a GMM model
options = statset('MaxIter', 75536);
gmm = fitgmdist(X(:), K,'Start',cInd,'CovarianceType','diagonal','Regularize',1e-5,'Options',options);
The piece of code shows how to fit a GMM to a univariate Gaussian distribution. X is and image. But how this can be extended to create a a 2 component 2 dimensional multivariate GMM?
1 comentario
Sergio Cypress
el 17 de Sept. de 2017
http://web.eecs.umich.edu/~cscott/pubs/tcem_tr.pdf this paper present EM algorithm to handle Multi GMM.
Respuestas (1)
Prashant Arora
el 19 de Jul. de 2017
Hi Akshara,
The gmdistribution function supports multivariate gaussian distributions. Check the required dimensions of mu and sigma to create a multivariate 2 dimensional 2 component distribution.
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!