How to get equation of signal in matlab

19 visualizaciones (últimos 30 días)
Muhammad Usman Saleem
Muhammad Usman Saleem el 15 de Jul. de 2017
Comentada: Star Strider el 24 de Jul. de 2017
I want to find equation of this signal.
I plot this time series data and filter it with sSgolay filter. Now I want to get equation of this signal. Is this possible in matlab??
I have attached data of this plot with this post
  4 comentarios
Muhammad Usman Saleem
Muhammad Usman Saleem el 20 de Jul. de 2017
@Grej Thanks for your reply. I have not expertise in neural network. So I not know whether this network has created for such meteorological problems. In matlab I know there are some models like AR, ARMA which simulate the data set then forecast it. I tried them alot but unable to fit them due to lacking in expertise.
How can I forecast snow for one day ahead using this time series data set?
Thanks
Greg Heath
Greg Heath el 20 de Jul. de 2017
help NARNET
doc NARNET
help NNCORR
doc NNCORR
greg NARNET
Hope this helps.
Greg

Iniciar sesión para comentar.

Respuesta aceptada

Star Strider
Star Strider el 15 de Jul. de 2017
I am not certain what you intend by getting an equation for it.
You can filter out the noise to see the general trend:
fidi = fopen('data.txt','rt');
D = textscan(fidi, '%s%f', 'Delimiter','\t', 'CollectOutput',1);
t = datenum(D{1});
s = D{2};
Ts = mean(diff(t)); % Sampling Interval
Fs = 1/Ts; % Sampling Frequency
Fn = Fs/2; % Nyquist Frequency
L = numel(t); % Signal Length
sm = s-mean(s); % Subtract Mean To Make Amplitudes At Frequencies>0 More Prominent
FTs = fft(sm)/L; % Fourier Transform
Fv = linspace(0, 1, fix(L/2)+1)*Fn; % Frequency Vector
Iv = 1:length(Fv); % Index Vector
Phs = angle(FTs);
figure(1)
plot(Fv, abs(FTs(Iv))*2)
grid
xlabel('Frequency (Days^{-1})')
ylabel('Amplitude')
set(gca, 'XLim',[0 0.05])
Wp = [0.0045]/Fn; % Passband Frequencies (Normalised)
Ws = [0.0055]/Fn; % Stopband Frequencies (Normalised)
Rp = 10; % Passband Ripple (dB)
Rs = 50; % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs); % Filter Order
[z,p,k] = cheby2(n,Rs,Ws); % Filter Design
[sosbp,gbp] = zp2sos(z,p,k); % Convert To Second-Order-Section For Stability
figure(2)
freqz(sosbp, 2^16, Fs) % Filter Bode Plot
s_filt = filtfilt(sosbp,gbp, s); % Filter Signal
figure(3)
plot(t, s, '-b')
hold on
plot(t, s_filt, '-r', 'LineWidth',1.5)
hold off
xlabel('Time (Days)')
ylabel('Amplitude')
legend('Original', 'Lowpass Filtered')
  8 comentarios
Muhammad Usman Saleem
Muhammad Usman Saleem el 24 de Jul. de 2017
Thank you sir so much!
Star Strider
Star Strider el 24 de Jul. de 2017
As always, my pleasure!
If my Answer helped solve your problem, please Accept it.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Spectral Estimation en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by