How to solve the code?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Darsana P M
el 25 de Jul. de 2017
Comentada: Darsana P M
el 27 de Jul. de 2017
Can somebody help me out.I am preforming the cocktail problem ie I have two signals, I deliberately mix them and I have to recover both the signals separately.In the code below, the two signals are shown as red and blue.I was able to separate the first signal. I need to extract the other signal also. How will I do it?
f1 = 1100; % frequency of tone generator 1; unit: Hz
f2 = 2900; % frequency of tone generator 2; unit: Hz
Ts = 1/(40*max(f1,f2)); % sampling period; unit: s
dMic = 1; % distance between microphones centered about origin; unit: m
dSrc = 10; % distance between tone generators centered about origin; unit: m
c = 340.29; % speed of sound; unit: m / s
% generate tones
figure(1);
t = [0:Ts:0.025];
tone1 = sin(2*pi*f1*t);
tone2 = sin(2*pi*f2*t);
plot(t,tone1);
hold on;
plot(t,tone2,'r'); xlabel('time'); ylabel('amplitude');
axis([0 0.005 -1 1]); legend('tone 1', 'tone 2');
hold off;
dMic=0
% mix tones at microphones
% assume inverse square attenuation of sound intensity (i.e., inverse linear attenuation of sound amplitude)
figure(2);
dNear = (dSrc - dMic)/2;
dFar = (dSrc + dMic)/2;
mic1 = 1/dNear*sin(2*pi*f1*(t-dNear/c)) + 1/dFar*sin(2*pi*f2*(t-dFar/c));
mic2 = 1/dNear*sin(2*pi*f2*(t-dNear/c)) + 1/dFar*sin(2*pi*f1*(t-dFar/c));
plot(t,mic1);
hold on;
plot(t,mic2,'r'); xlabel('time'); ylabel('amplitude');
axis([0 0.005 -1 1]); legend('mic 1', 'mic 2');
hold off;
% use svd to isolate sound sources
figure(3);
x = [mic1' mic2'];
[W,s,v]=svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');
plot(t,v(:,1));
hold on;
maxAmp = max(v(:,1));
plot(t,v(:,2),'r'); xlabel('time'); ylabel('amplitude');
axis([0 0.005 -maxAmp maxAmp]); legend('isolated tone 1', 'isolated tone 2');
hold off;
0 comentarios
Respuesta aceptada
David Goodmanson
el 25 de Jul. de 2017
Editada: David Goodmanson
el 25 de Jul. de 2017
Hi Darsana,
I don't know how close the answer is supposed to be to tones with unit amplitude, but if you get rid of the odd dMic=0 command halfway down the code, the results look a lot better. With dMic=0 the two microphone signals are identical and svd has a pretty hard task.
3 comentarios
David Goodmanson
el 26 de Jul. de 2017
do you mean
figure(1)
plot(t,v(:,1))
xlabel('time') % etc.
figure(2)
plot(t,v(:,2))
xlabel('time') % etc.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!