4-class perceptron classification
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Good evening, I hope everyone is well. I have a single-layer perceptron that is meant to take in two inputs and provide an output as one of four classifications. I then need to plot the inputs and the hyperplanes dividing the four classes. I'm getting errors when I try to run the code that I suspect are related to the number of outputs I'm trying to get. Here's the code I'm working with:
if true
% Initialize the Input Space (extended input matrix)
x = [1 1 1 2 2 -1 -2 -1 -2; 1 1 2 -1 0 2 1 -1 -2];
% Initialize the extended target vector
t = [0 1 1 2 2 3 3 4 4];
% Plot the input locations
figure
hold on
for i=1:length(x)
if (t(i)==1)
scatter(x(1,i), x(2,i),'k ', 'filled');
elseif (t(i)==2)
scatter(x(1,i), x(2,i),'r ', 'filled');
elseif (t(i)==3)
scatter(x(1,i), x(2,i),'b ', 'filled');
elseif (t(i)==4)
scatter(x(1,i), x(2,i),'g ', 'filled');
end
end
grid on
line([0 0], ylim, 'linewidth', 1); %y-axis
line(xlim, [0 0], 'linewidth', 1); %x-axis
legend('class_1', 'class_2', 'class_3', 'class_4')
net = perceptron;
net.trainparam.epochs = 100; % Set # of training epochs
net.trainparam.goal = 1e-2; % Set desired max error
net.trainparam.lr = 0.1; % Set desired learning rate
train(net, x, t); % Train the perceptron
predictions = net(x); % Get data predictions
net.IW{:}; % Learned weights
net.b{:}; % Learned biases
% Equation of a line: w1*x1 + w2*x2 + b = 0
% Plot the lines
plot([-net.b{1}/net.IW{:}(1,1),0],[0,-net.b{1}/net.IW{:}(1,2)])
plot([-net.b{2}/net.IW{:}(2,1),0],[0,-net.b{2}/net.IW{:}(2,2)])
hold off;
end
The trainparam epochs, goal and lr are initial conditions an can change but I don't think that's where the problem is.
I'd appreciate any help you're able to provide. Best regards.
4 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Define Shallow Neural Network Architectures en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!