Non linear boundary value problem with infinity.How to solve?

3 visualizaciones (últimos 30 días)
Purush otham
Purush otham el 23 de Mayo de 2018
Comentada: Torsten el 23 de Mayo de 2018
dx/dphi= ((b*cos(phi))/((c*((z/b)-L))-(b*(sin(phi)/x))));
dz/dphi= ((b*sin(phi))/((c*((z/b)-L))-(b*(sin(phi)/x))));
Boundary conditions:
dz/dx=tan(124.119) at (xc,zc) xc=0.39047; zc=0.26333;
z=L=0.144017750497892 at x=infinity

Respuestas (1)

Torsten
Torsten el 23 de Mayo de 2018
Use dz/dx = dz/dt / dx/dt and the initial condition z(0.39047)=0.26333 to solve your system from above. The condition at x=infinity will either be satisfied or not - you cannot prescribe it.
Best wishes
Torsten.
  12 comentarios
Purush otham
Purush otham el 23 de Mayo de 2018
When I integrate the above the obtained result does not satisfy the conditions. I did not understand exactly what you mean by the 1st boundary condition satisfied. If by satisfied you mean by substitution, then yes.If by ode45 or bvp, then no. Wait I have attached the code:
format long
xini=0.39047;
zini=0.26333;
phiini=124.119;
stepsize=1e-4;
R=((xini/sin(deg2rad(phiini))))
for beta=45
for b=1
c=(beta/(b^2));
L=((2/c)*((2/R)-(1/b)))
for phifin=180;
%code begins
phi1=deg2rad(phiini);
phi2=deg2rad(phifin);
f=@(phi,x)[((b*cos(phi))/((c*((x(2)/b)-L))-(b*(sin(phi)/x(1)))));((b*sin(phi))/((c*((x(2)/b)-L))-(b*(sin(phi)/x(1)))))];
[phi,xa]=ode45(f,[phi1:stepsize:phi2],[xini zini]);
X=xa(:,1);
Z=xa(:,2);
plot(X,Z,'or') %xa(:,1)=xvalues & xa(:,2)=zvalues
ylabel('z axis')
xlabel('x axis')
title('tails')
end
end
end
Torsten
Torsten el 23 de Mayo de 2018
When I integrate the above the obtained result does not satisfy the conditions. I did not understand exactly what you mean by the 1st boundary condition satisfied. If by satisfied you mean by substitution, then yes.If by ode45 or bvp, then no.
But you said that
(b*sind(phiini)/(c*(zini/b-L)-b*sind(phiini)/xini))/(b*cosd(phiini)/(c*(zini/b-L)-b*sind(phiini)/xini))-tand(phiini)=0
so dz/dx = tan(phic) at (xc,zc) holds.
I don't understand what you mean by "the obtained result does not satisfy the conditions".
But the condition z=L at x=Inf is irritating. There must be a second-order ODE that you did not yet mention for which two boundary conditions have to be imposed.
Best wishes
Torsten.

Iniciar sesión para comentar.

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by