3d phase portrait
94 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Aishah Malek
el 28 de Ag. de 2018
Comentada: Gulmira Tussupbekova
el 2 de Abr. de 2020
Hi, I want to plot a 3-d phase portrait for a set of 3 ODEs, i have used the following code and i get a basic plot, i was wondering how to add direction arrows and a mesh grid and why i only get single spirals for the trajectories. Here is the code i have used:
function f = cluster(t,y)
%BD
a=1;
b=1.2;
%equilibrium values
%c1 equilbrium value
f = zeros(size(y));
f(1) = -50*a*y(1)-b*y(1)+15*a*y(1)*y(2)+20*a*y(2)*y(3)+y(2)*b+9*a*y(2)^2+6*a*y(1)^2-60*a*y(2)-80*a*y(3)+24*a*y(2)*y(3)+16*a*y(3)^2;
f(2) = 10*a*y(1) - a*y(1)*y(2) -4*a*y(1)*y(3) -2*a*y(1)^2 -b*y(2) +3*a*y(2)^2 -10*a*y(2) +4*a*y(2)*y(3) +b*y(3);
f(3) = -2*a*y(1)*y(2) - 3*a*y(2)^2 -4*a*y(2)*y(3) +10*a*y(2)-b*y(3);
Plotting code:
[t,y] = ode45(@cluster,[0:0.01:1],[1 2 3]);
figure(1)
plot(t,y(:,3)); % plot of z(t) versus time
figure(2)
plot(t,y(:,1));
figure(3)
plot(y(:,1),y(:,3)); % plot of z versus x
figure(4)
plot3(y(:,1),y(:,2),y(:,3)); % 3D plot of trajectory
figure(5)
plot(y(:,1),y(:,2)); % plot of z versus x
figure(6)
plot(y(:,3),y(:,1));
I have computed the corresponding eigen values and vector points for specific equilbrium points in a separate file not sure if that will help?
2 comentarios
Akshay Khadse
el 31 de Ag. de 2018
Editada: Akshay Khadse
el 31 de Ag. de 2018
Can you elaborate on what is the "f" in your code above? According to me, for a phase portrait, "f" should be the gradients. However, you are plotting the solution of the differential equations, hence the single spirals.
Respuesta aceptada
Akshay Khadse
el 31 de Ag. de 2018
Editada: Akshay Khadse
el 31 de Ag. de 2018
You can get 3D Phase Portraits by plotting the gradients against the co-ordinates using the " meshgrid ", and " quiver3 " functions.
" meshgrid " is used to generate the 2D or 3D grids and " quiver " or " quiver3 " is used to place arrows at these co-ordinates.
Creating meshgrid:
[x1,y1,z1] = meshgrid(-2:0.2:2,-2:0.2:2,-2:0.2:2);
u = zeros(size(x1));
v = zeros(size(y1));
w = zeros(size(z1));
Calculating gradients:
t=0;
for i = 1:numel(x1)
Yprime = cluster(t,[x1(i); y1(i); z1(i)]);
u(i) = Yprime(1);
v(i) = Yprime(2);
w(i) = Yprime(3);
end
Plotting:
quiver3(x1,y1,z1,u,v,w); figure(gcf)
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!