Can I use pdepe to solve a nonlinear PDE system?

3 visualizaciones (últimos 30 días)
Augusto C
Augusto C el 6 de Sept. de 2018
Editada: Augusto C el 7 de Sept. de 2018
I'm trying to solve the following PDE system for ?(z,t) and v(z,t), using pdepe:
∂/∂z [(1/? + A)*∂v/∂z - v*∂?/∂z)] + [1/(1-?)]*[A*∂v/∂z *∂(1-?)/∂z - B*v/?^2] = 0
∂?/∂t = ∂/∂z[v*(1-?)]
where A and B are constants. The initial condition is
?(z,0) = 0.05
and the boundary conditions are
v(0,t) = 0
v(1,t) = - 0.1
The code I used is this [I use u(1) ≡ ? and u(2) ≡ v]:
function rbs
m = 0;
x = linspace(0,10,100);
t = linspace(0,10,100);
sol = pdepe(m,@rbs_pde,@rbs_ic,@rbs_bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
% --------------------------------------------------------------
function [c,f,s] = rbs_pde(x,t,u,DuDx)
c = [0; 1];
f = [((1/u(1)) + (1/0.75))*DuDx(2) - u(2)*DuDx(1); (1 - u(1))*u(2)];
s = [-(1/(1 - u(1)))*DuDx(1)*DuDx(2) - (1/8000^2)*(1/(1 - u(1)))*u(2)/(u(1))^2; 0];
% --------------------------------------------------------------
function u0 = rbs_ic(x);
u0 = [1; 0];
% --------------------------------------------------------------
function [pl,ql,pr,qr] = rbs_bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [0; 0];
pr = [0; ur(2) + 1e-1];
qr = [0; 0];
However, I get the following error message:
Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial
derivative.
  1 comentario
Bill Greene
Bill Greene el 7 de Sept. de 2018
What are the boundary conditions for ?? Your first equation has a second derivative of ? with respect to z so you need two boundary conditions.

Iniciar sesión para comentar.

Respuestas (0)

Etiquetas

Productos


Versión

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by