Predict response given new input data | GLME

2 visualizaciones (últimos 30 días)
Joel
Joel el 11 de Oct. de 2018
Comentada: Joel el 11 de Oct. de 2018
I am trying to fit a model between a dependent variable (Y) and two predictor variables (X, Z) using GLME.
First I divided the data into training (80%) and validation (20%). I've fitted a GLME model to the training data:
X = Xtr % Validation portion of data (442x1);
Z = Ztr % Validation portion of data (442x1);
Y = Ytr % Validation portion of data (442x1);
trTable = table(Y,X,Z);
mdl_glme = fitglme(trTable,'Y ~ X + (1 | Z) + (-1 + X | Z)')'
Now I want to test this model on new (validation) data. This is where I run into problems. If I try:
X = Xval % Validation portion of data (110x1);
Z = Zval % Validation portion of data (110x1);
Y = Yval % Validation portion of data (110x1);
valTable = table(Y,X,Z);
ypred = predict(mdl_glme,valTable)
I get the following error:
Error using categorical (line 434)
Unable to create default category names. Specify category names using the CATEGORYNAMES
input argument.
Error in nominal (line 152)
b = b@categorical(a,args{:},'Ordinal',false);
Error in classreg.regr.LinearLikeMixedModel/makeInteractionVar (line 806)
G = nominal(ds.(interactionVars{1}));
Error in classreg.regr.LinearLikeMixedModel/extractGroupingInfo (line 205)
model.makeInteractionVar(ds,interactionVars);
Error in GeneralizedLinearMixedModel/predict (line 539)
ginfo = extractGroupingInfo(model,ds);
Though if I inspect trTable and valTable the only difference I can see is the number of rows:
442×3 table (trTable)
Y X Z
_________ _________ ________
1.2107 1.2011 0.098847
110×3 table (valTable)
Y X Z
_________ _________ ______
1.6064 1.6024 1.6024
I would be very grateful for any feedback and/or advice.
Regards J
  2 comentarios
the cyclist
the cyclist el 11 de Oct. de 2018
Can you upload your dataset, or a minimal subset that exhibits the problem?
(Sometimes trying to find the minimal subset that causes the problem will actually help identify the cause.)
Joel
Joel el 11 de Oct. de 2018
Thanks! I really appreciate it! I will upload it first thing tomorrow morning as I do not have access to it at the moment (home computer).
Regards J

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Support Vector Machine Regression en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by