FFT and IFFT: Random Phases
25 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Nycholas Maia
el 21 de Mzo. de 2019
Comentada: oloo
el 22 de Feb. de 2023
I imported a single audio file to MATLAB workspace.
After I apply the FFT:
Y = fft(signal)
How can I random change the audio phases before apply the Inverse FFT and get the 'new_signal'?
new_signal = ifft(Y)
How can I do it?
0 comentarios
Respuesta aceptada
Brittany Scheid
el 16 de Jun. de 2019
Editada: Brittany Scheid
el 16 de Jun. de 2019
Following the comment by David Goodmanson above, here is what I used to randomize an array of timeseries data:
function randX = phaseRandomize(X)
% Returns a phase-randomized version of the input data X. If X is an array,
% each row is treated as an independant time series, and columns represent
% sample points.
[N,L]=size(X);
Y=fft(X,[],2); % Get spectrum
% Add random phase shifts (negative for conjugates), preserve DC offset
rnd_theta= -pi + (2*pi).*rand(N,L/2-1);
Y(:,2:L/2)=Y(:,2:L/2).*exp(1i*rnd_theta);
Y(:,L/2+2:L)=Y(:,L/2+2:L).*exp(-1i*flip(rnd_theta,2));
% return phase-randomized data
randX =ifft(Y,[],2);
end
2 comentarios
oloo
el 21 de Feb. de 2023
Could You please provide code to revert phases back to oryginal signal? of course based on same rnd_theta. Thank You very much.
Más respuestas (1)
David Goodmanson
el 22 de Mzo. de 2019
Hi Nycholas,
Assuming signal is real and of length n, n even, then
Y(1) is for frequency 0, the DC contribution, and it's real. Don't mess with that point.
Y(2) and Y(n) are complex conjugates. You can multiply one of that pair by exp(i*theta) and the other by exp(-i*theta), where theta is a random angle with 0 <= theta < 2*pi. the new Y(2) and Y(n) remain complex conugates.
In general from k = 2 to n/2, Y(k) and Y(n+2-k) form a complex conjugate pair. For each of those pairs, do the same kind of multiplcation as above, with a different random angle. Each pair remain complex conjugates.
Y(n/2+1) is real. Don't mess with that point either.
ifft back.
Here the random phases are totally uncorrelated from frequency to frequency, which may or may not be physically realistic.
3 comentarios
David Daminelli
el 1 de Jun. de 2019
Hello NM and DG! I'm working on a project that needs this same function, and I've done an algorithm that does that. It is here https://www.mathworks.com/matlabcentral/answers/465112-help-with-sound-function, followed by a question I had during the project, if they can help it would be usefull!
Ver también
Categorías
Más información sobre Transforms en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!