2DOF System - What is wrong with the implemented differential equations here?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
For the following system, you should see frequency and velocity decrease as depth is increased. However, my script is showing the opposite trend. I changed my Ks2 to have a negative height as a quick fix, but I don't know if that makes my results mathematically sound as far as the differential equations are concerned. Do you see an issue here?
RHOs = 1600; % Density (kg/m^3)
RADIUS = 0.1525; % Radius (m)
HEIGHT = 8; % Depth (in)
NAT_FREQ = 188; % Natural Frequency (Hz)
% Mass Parameters
Mm = 22.34;
Km = 3.11 * 10^7;
Rm = 2730;
Cs = 265; % Wave Speed (m/s)
ATTENUATION = 0.06; % Attenuation
% Calculations-------------------------------------------------------------
AREA = pi * RADIUS^2; % Surface Area (m^2)
HEIGHT = HEIGHT * 0.0254; % Depth (m)
CsP = Cs / (1 + ATTENUATION * 1i); % Longitudinal Wave Speed (m/s)
CsS = 0.5 * CsP; % Transverse Wave Speed
K = CsP^2 * RHOs; % Bulk Modulus (N/m^2) - Using Longitudinal Wave Speed
G = CsS^2 * RHOs; % Shear Modulus (N/m^2) - Using Shear Wave Speed
FREQ = 1:1000; FREQ = transpose(FREQ); % Frequency Data (1 - 1000 Hz)
LAMBDA = CsS ./ FREQ; % Wavelength from 1 - 1000 Hz (m)
COMP = K.^-1; % Compressibility (m^2/N)
% Textbook Formulas
Ms = RHOs * AREA * HEIGHT; % Mass (kg)
Ks1 = ((8 * pi) ./ LAMBDA) * G * RADIUS; % Shear Spring 1 (N/m^2)
Ks2 = (1 / COMP) * (AREA / -HEIGHT); % Spring (m^3/N) [changed height to negative sign to make correct trend]
Ks2 = real(Ks2); Rs2 = imag(Ks2); % Parameters
Ks1 = real(Ks1); Rs1 = imag(Ks1); % Parameters
PRESSURE = 1; FORCE = PRESSURE * AREA; % Converts Pressure (Pa) to Force (N)
NAT_OMEGA = 2 * pi * NAT_FREQ; % Converts Natural Frequency to Angular Frequency (rad/s)
vs = []; vm = []; % Initializes arrays for the for-loop.
for j = 1:length(FREQ)
OMEGA = 2 * pi * j;
if (HEIGHT == 0) % NO DEPTH
X = -1i * OMEGA * FORCE / (-Km + 1i * OMEGA * Rm + OMEGA^2 * Mm);
vs = [vs X];
else % WITH DEPTH
Rs1 = 0; Ks1 = 0;
A11 = Ks1 + Ks2 - 1i * OMEGA * (Rs1 + Rs2) - OMEGA^2 * Ms;
A12 = Ks2 + 1i * OMEGA * Rs2;
A21 = A12;
A22 = Km + Ks2 - 1i * OMEGA * (Rs2 + Rm) - OMEGA^2 * Mm;
A = [A11 A12; A21 A22];
X = A \ [-1i * OMEGA * FORCE; 0];
vs = [vs X(1)]; % Velocity
vm = [vm X(2)]; % Velocity
end
end
plot(1:1000, abs(vs)); xlim([0 500]);
title('Without Shear Parameters');
xlabel('Frequency (Hz)'); ylabel('Velocity (m/s/1Pa)');
% legend('0in', '2in', '4in', '8in', '16in')
hold on
3 comentarios
Bjorn Gustavsson
el 17 de Jun. de 2019
Why bother with Laplace transform, why not solve it analytically? It is a a system of linear ODEs...
Respuestas (0)
Ver también
Categorías
Más información sobre Assembly en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!