How to plot a "goal" into my plot?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Noah Wilson
el 13 de Dic. de 2019
Comentada: Noah Wilson
el 14 de Dic. de 2019
This is only to do something cool in the plot but I am plotting the trajectory of a soccer ball and I thought it would be cool to plot a "goal" (a rectangle) into the figure since I have a green surface that looks like a field already.
My code is the following:
%% Constants
t = linspace(0, 10, 1000);
m = 0.4; %mass (kg)
g = 9.8; %gravitational accel. (m/s.^2)
b = 0.44; %drag coefficient
w_1 = 1.5; %Angular Velocity
w_2 = 1; %Angular Velocity
w_3 = 0.5; %Angular Velocity
%% w_1
x_t_1 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_1 = (g.*m.*t.*w_1)./(b.^2 + w_1.^2) - (171.*b.^2.*m.*w_1)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (171.*m.*w_1.^3)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (2.*b.*g.*m.^2.*w_1)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*m.*w_1.^3.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.^2.*m.*w_1.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.*m.*w_1.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (g.*m.^2.*w_1.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (2.*b.*g.*m.^2.*w_1.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4);
z_t_1 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.*m.*w_1.^2)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (g.*m.^2.*w_1.^2)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (b.*g.*m.*t)./(b.^2 + w_1.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*m.*w_1.^3.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (171.*b.*m.*w_1.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.^2.*m.*w_1.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (g.*m.^2.*w_1.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (2.*b.*g.*m.^2.*w_1.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4);
%% w_2
x_t_2 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_2 = (g.*m.*t.*w_2)./(b.^2 + w_2.^2) - (171.*b.^2.*m.*w_2)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (171.*m.*w_2.^3)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (2.*b.*g.*m.^2.*w_2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*m.*w_2.^3.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.^2.*m.*w_2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.*m.*w_2.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (g.*m.^2.*w_2.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (2.*b.*g.*m.^2.*w_2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4);
z_t_2 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.*m.*w_2.^2)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (g.*m.^2.*w_2.^2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (b.*g.*m.*t)./(b.^2 + w_2.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*m.*w_2.^3.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (171.*b.*m.*w_2.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.^2.*m.*w_2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (g.*m.^2.*w_2.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (2.*b.*g.*m.^2.*w_2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4);
%% w_3
x_t_3 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_3 = (g.*m.*t.*w_3)./(b.^2 + w_3.^2) - (171.*b.^2.*m.*w_3)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (171.*m.*w_3.^3)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (2.*b.*g.*m.^2.*w_3)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*m.*w_3.^3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.^2.*m.*w_3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.*m.*w_3.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (g.*m.^2.*w_3.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (2.*b.*g.*m.^2.*w_3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4);
z_t_3 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.*m.*w_3.^2)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (g.*m.^2.*w_3.^2)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (b.*g.*m.*t)./(b.^2 + w_3.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*m.*w_3.^3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (171.*b.*m.*w_3.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.^2.*m.*w_3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (g.*m.^2.*w_3.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (2.*b.*g.*m.^2.*w_3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4);
%% Drag Only
xt = (23.49.*m./b) - (23.49.*m.*exp(-b.*t./m)./b);
yt = 0.*t;
zt = (m.*(171.*b + 20.*g.*m)./(20.*b.^2)) - (m.*(g.*t + (exp(-b.*t./m).*(171.*b + 20.*g.*m)./(20.*b)))./b);
%% Plot
figure(1)
plot3(x_t_1, y_t_1, z_t_1)
hold on
plot3(x_t_2, y_t_2, z_t_2)
plot3(x_t_3, y_t_3, z_t_3)
plot3(xt, yt, zt)
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
% xlim([0 15])
ylim([-5 5])
zlim([0 inf])
hs = surf(xlim, ylim, zeros(2));
hs.FaceColor = [0.3 0.5 0.1];
grid on
legend('\omega = 1.5 rad/s', '\omega = 1.0 rad/s', '\omega = 0.5 rad/s', 'Drag Only')
hold off
I'm not sure if a piecewise plot might be the way to go to get a rectangle at z=0, y=[-2 2], x=20 ?
Thanks for the help in advanced!
0 comentarios
Respuesta aceptada
Más respuestas (0)
Ver también
Categorías
Más información sobre Annotations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!