Problem with definite Integral
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
AVM
el 2 de Jun. de 2020
Comentada: AVM
el 7 de Jun. de 2020
I am trying to solve the following definite double integration numerically. The expressions contain summaitions also but that is being executed within few seconds. When the double integration section comes, it is taking extremy huge time even after 7 hours it is still going on without any output. Any advice will be highly appreciated.
clc;
syms n r theta m p l t
w=1.0;
d=1.0;
g=0.2;
lmd=0.5;
assume(r,'real');
assume(theta,'real');
assume(t, 'real');
om=sqrt(((w).^2)-(4.*(g.^2)));
mu=sqrt((w+om)./(2.*om));
nu=((w-om)./(2.*g)).*mu;
eta=(((lmd)./((2.*g)+w)).*(1+((w-om)./(2.*g)))).*mu;
En=((n+(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
um=((m+(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
Enn=((n-(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
umm=((m-(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
Dn=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL(n,(4.*((eta).^2))));
Dm=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL(m,(4.*((eta).^2))));
Dnn=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL((n-1),(4.*(eta.^2))));
Dmm=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL((m-1),(4.*(eta.^2))));
Em=En - Dn;
Um=um-Dm;
Ep=Enn + Dnn;
Up=umm +Dmm;
epsn=(Ep-Em)./2;
epsm=(Up-Um)./2;
Deln=(eta.*d./sqrt(n)).*exp(-2.*(eta.^2)).*laguerreL((n-1),1,(4.*(eta.^2)));
Delm=(eta.*d./sqrt(m)).*exp(-2.*(eta.^2)).*laguerreL((m-1),1,(4.*(eta.^2)));
xn=sqrt(((epsn).^2)+((Deln).^(2)));
xm=sqrt(((epsm).^2)+((Delm).^(2)));
zetapn=sqrt(((xn)+(epsn))./(2.*xn));
zetamn=sqrt(((xn)-(epsn))./(2.*xn));
zetapm=sqrt(((xm)+(epsm))./(2.*xm));
zetamm=sqrt(((xm)-(epsm))./(2.*xm));
z= 1i.*(mu-nu).*eta./(sqrt(2.*mu.*nu));
a1n=(zetapn./sqrt(factorial(n-1))).*((-nu./(2.*mu)).^(-1./2)).*hermiteH(n-1, z);
b1n=(Deln./abs(Deln)).*(zetamn./sqrt(factorial(n))).*hermiteH(n, z);
a2n=(zetamn./sqrt(factorial(n-1))).*((-nu./(2.*mu)).^(-1./2))*hermiteH(n-1, z);
b2n= (Deln./abs(Deln)).*(zetapn./sqrt(factorial(n))).*hermiteH(n, z);
a1m=(zetapm./sqrt(factorial(m-1))).*((-nu./(2.*mu)).^(-1./2)).*hermiteH(m-1, z);
b1m=(Delm./abs(Delm)).*(zetamm./sqrt(factorial(m))).*hermiteH(m, z);
a2m=(zetamm./sqrt(factorial(m-1))).*((-nu./(2.*mu)).^(-1./2))*hermiteH(m-1, z);
b2m= (Delm./abs(Delm)).*(zetapm./sqrt(factorial(m))).*hermiteH(m, z);
c0= -(1./sqrt(2.*mu)).*exp(-((eta.^2)./2)+ ((nu.*(eta).^2)./(2.*mu)));
cpn= -c0.*((-nu./(2.*mu)).^(n./2)).*(a1n - b1n);
cmn= -c0.*((-nu./(2.*mu)).^(n./2)).*(a2n + b2n);
cpm= -c0.*((-nu./(2.*mu)).^(m./2)).*(a1m - b1m);
cmm= -c0.*((-nu./(2.*mu)).^(m./2)).*(a2m + b2m);
E0=(om./2)-(w./2)-(((lmd).^2)./((2.*g)+w));
eg= E0-((d./2).*(exp(-2.*((eta).^(2)))));
ep=(1./2).*(Ep+ Em + (sqrt(((Ep-Em).^2)+(4.*((Deln).^2)))));
em=(1./2).*(Ep+ Em - (sqrt(((Ep-Em).^2)+(4.*((Deln).^2)))));
upp= (1./2).*(Up+ Um + (sqrt(((Up-Um).^2)+(4.*((Delm).^2)))));
umm= (1./2).*(Up+ Um - (sqrt(((Up-Um).^2)+(4.*((Delm).^2)))));
c0t= c0.*exp(-1i.*eg.*t);
cpnt= cpn.*exp(-1i.*ep.*t);
cmnt= cmn.*exp(-1i.*em.*t);
cpmt= cpm.*exp(-1i.*upp.*t);
cmmt= cmm.*exp(-1i.*umm.*t);
Ant=zetapn.*cpnt + zetamn.*cmnt;
Bnt= (Deln./abs(Deln)).*(zetamn.*cptn - zetapn.*cmnt);
Amt= zetapm.*cpmt + zetamm.*cmmt;
Bmt= (Delm./abs(Delm)).*(zetamm.*cpmt - zetapm.*cmmt);
beta= r.*exp(1i.*theta);
guard_digits = 10;
sp11= ((1i.^p)./factorial(p)).*((nu./(2.*mu)).^(p./2)).*hermiteH(p, 1i.*beta./sqrt(2.*mu.*nu)).*(eta.^(p+m)).*hypergeom([-p -m],[], -1./(eta.^2));
Hp11= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-((beta.^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(m))).*sum(vpa(subs(sp11,p,1:20), guard_digits));
sp22= (((-1i).^l)./factorial(l)).*((nu./(2.*mu)).^(l./2)).*hermiteH(l, -1i.*conj(beta)./sqrt(2.*mu.*nu)).*(eta.^(l+n)).*hypergeom([-l -n],[], -1./(eta.^2));
Hp22= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-(((conj(beta)).^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(n))).*sum(vpa(subs(sp22,l,1:20), guard_digits));
sm11= ((1i.^p)./factorial(p)).*((nu./(2.*mu)).^(p./2)).*hermiteH(p, 1i.*beta./sqrt(2.*mu.*nu)).*(-eta.^(p+m)).*hypergeom([-p -m],[], -1./(eta.^2));
Hm11= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-((beta.^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(m))).*sum(vpa(subs(sm11,p,1:20), guard_digits));
sm22= (((-1i).^l)./factorial(l)).*((nu./(2.*mu)).^(l./2)).*hermiteH(l, -1i.*conj(beta)./sqrt(2.*mu.*nu)).*(-eta.^(l+n)).*hypergeom([-l -n],[], -1./(eta.^2));
Hm22= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-(((conj(beta)).^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(n))).*sum(vpa(subs(sm22,l,1:20), guard_digits));
Hp1=Hp22.*Hp11;
Hm1=Hm22.*Hm11;
Hp(n,m)= (1./(2.*pi)).*(Hp1 + Hm1);
Hm(n,m)= (1./(2.*pi)).*(Hp1 - Hm1);
f11=((abs(c0t)).^2).*Hp(0,0);
f22= c0t.*conj(Ant).*Hm(0,n-1) + conj(c0t).*Ant.*Hm(n-1,0)+ c0t.*conj(Bnt).*Hp(0,n) + conj(c0t).*Bnt.*Hp(n,0);
f33= Ant.*conj(Amt).*Hp(n-1,m-1) + Bnt.*conj(Bmt).*Hp(n,m) + Bnt.*conj(Amt).*Hm(n,m-1) +Ant.*conj(Bmt).*Hm(n-1,m);
sf33= sum(vpa(subs(f33,m,1:20), guard_digits));
f=f11 + sum(vpa(subs(f22,n,1:20), guard_digits)) + sum(vpa(subs(sf33,n,1:20), guard_digits));
vpaintegral(vpaintegral(f, r, [0 10]), theta, [0 2.*pi]) %% 'r' and 'theta' are integration variable
%int(int(f,r,0,10),theta,0,2*pi)
0 comentarios
Respuesta aceptada
Ameer Hamza
el 2 de Jun. de 2020
If you check at the expression of 'f', you can see it also has 't'. So even if you try to numerically integrate it w.r.t. 'r' and 'theta', the answer will still be symbolic.
Also, I suggest you to use matlabFunction() to convert the symbolic expression into a floating-point function, which is much faster than the symbolic calculations. For example, instead of vpaintegral(), try this
F = matlabFunction(f, 'Vars', [r theta t]);
int_val = integral2(@(r, theta) F(r, theta, 0), 0, 10, 0, 2*pi)
This assumes that t=0 to get a function in terms of r and theta.
15 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!