Problem with definite Integral

2 visualizaciones (últimos 30 días)
AVM
AVM el 2 de Jun. de 2020
Comentada: AVM el 7 de Jun. de 2020
I am trying to solve the following definite double integration numerically. The expressions contain summaitions also but that is being executed within few seconds. When the double integration section comes, it is taking extremy huge time even after 7 hours it is still going on without any output. Any advice will be highly appreciated.
clc;
syms n r theta m p l t
w=1.0;
d=1.0;
g=0.2;
lmd=0.5;
assume(r,'real');
assume(theta,'real');
assume(t, 'real');
om=sqrt(((w).^2)-(4.*(g.^2)));
mu=sqrt((w+om)./(2.*om));
nu=((w-om)./(2.*g)).*mu;
eta=(((lmd)./((2.*g)+w)).*(1+((w-om)./(2.*g)))).*mu;
En=((n+(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
um=((m+(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
Enn=((n-(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
umm=((m-(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
Dn=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL(n,(4.*((eta).^2))));
Dm=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL(m,(4.*((eta).^2))));
Dnn=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL((n-1),(4.*(eta.^2))));
Dmm=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL((m-1),(4.*(eta.^2))));
Em=En - Dn;
Um=um-Dm;
Ep=Enn + Dnn;
Up=umm +Dmm;
epsn=(Ep-Em)./2;
epsm=(Up-Um)./2;
Deln=(eta.*d./sqrt(n)).*exp(-2.*(eta.^2)).*laguerreL((n-1),1,(4.*(eta.^2)));
Delm=(eta.*d./sqrt(m)).*exp(-2.*(eta.^2)).*laguerreL((m-1),1,(4.*(eta.^2)));
xn=sqrt(((epsn).^2)+((Deln).^(2)));
xm=sqrt(((epsm).^2)+((Delm).^(2)));
zetapn=sqrt(((xn)+(epsn))./(2.*xn));
zetamn=sqrt(((xn)-(epsn))./(2.*xn));
zetapm=sqrt(((xm)+(epsm))./(2.*xm));
zetamm=sqrt(((xm)-(epsm))./(2.*xm));
z= 1i.*(mu-nu).*eta./(sqrt(2.*mu.*nu));
a1n=(zetapn./sqrt(factorial(n-1))).*((-nu./(2.*mu)).^(-1./2)).*hermiteH(n-1, z);
b1n=(Deln./abs(Deln)).*(zetamn./sqrt(factorial(n))).*hermiteH(n, z);
a2n=(zetamn./sqrt(factorial(n-1))).*((-nu./(2.*mu)).^(-1./2))*hermiteH(n-1, z);
b2n= (Deln./abs(Deln)).*(zetapn./sqrt(factorial(n))).*hermiteH(n, z);
a1m=(zetapm./sqrt(factorial(m-1))).*((-nu./(2.*mu)).^(-1./2)).*hermiteH(m-1, z);
b1m=(Delm./abs(Delm)).*(zetamm./sqrt(factorial(m))).*hermiteH(m, z);
a2m=(zetamm./sqrt(factorial(m-1))).*((-nu./(2.*mu)).^(-1./2))*hermiteH(m-1, z);
b2m= (Delm./abs(Delm)).*(zetapm./sqrt(factorial(m))).*hermiteH(m, z);
c0= -(1./sqrt(2.*mu)).*exp(-((eta.^2)./2)+ ((nu.*(eta).^2)./(2.*mu)));
cpn= -c0.*((-nu./(2.*mu)).^(n./2)).*(a1n - b1n);
cmn= -c0.*((-nu./(2.*mu)).^(n./2)).*(a2n + b2n);
cpm= -c0.*((-nu./(2.*mu)).^(m./2)).*(a1m - b1m);
cmm= -c0.*((-nu./(2.*mu)).^(m./2)).*(a2m + b2m);
E0=(om./2)-(w./2)-(((lmd).^2)./((2.*g)+w));
eg= E0-((d./2).*(exp(-2.*((eta).^(2)))));
ep=(1./2).*(Ep+ Em + (sqrt(((Ep-Em).^2)+(4.*((Deln).^2)))));
em=(1./2).*(Ep+ Em - (sqrt(((Ep-Em).^2)+(4.*((Deln).^2)))));
upp= (1./2).*(Up+ Um + (sqrt(((Up-Um).^2)+(4.*((Delm).^2)))));
umm= (1./2).*(Up+ Um - (sqrt(((Up-Um).^2)+(4.*((Delm).^2)))));
c0t= c0.*exp(-1i.*eg.*t);
cpnt= cpn.*exp(-1i.*ep.*t);
cmnt= cmn.*exp(-1i.*em.*t);
cpmt= cpm.*exp(-1i.*upp.*t);
cmmt= cmm.*exp(-1i.*umm.*t);
Ant=zetapn.*cpnt + zetamn.*cmnt;
Bnt= (Deln./abs(Deln)).*(zetamn.*cptn - zetapn.*cmnt);
Amt= zetapm.*cpmt + zetamm.*cmmt;
Bmt= (Delm./abs(Delm)).*(zetamm.*cpmt - zetapm.*cmmt);
beta= r.*exp(1i.*theta);
guard_digits = 10;
sp11= ((1i.^p)./factorial(p)).*((nu./(2.*mu)).^(p./2)).*hermiteH(p, 1i.*beta./sqrt(2.*mu.*nu)).*(eta.^(p+m)).*hypergeom([-p -m],[], -1./(eta.^2));
Hp11= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-((beta.^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(m))).*sum(vpa(subs(sp11,p,1:20), guard_digits));
sp22= (((-1i).^l)./factorial(l)).*((nu./(2.*mu)).^(l./2)).*hermiteH(l, -1i.*conj(beta)./sqrt(2.*mu.*nu)).*(eta.^(l+n)).*hypergeom([-l -n],[], -1./(eta.^2));
Hp22= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-(((conj(beta)).^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(n))).*sum(vpa(subs(sp22,l,1:20), guard_digits));
sm11= ((1i.^p)./factorial(p)).*((nu./(2.*mu)).^(p./2)).*hermiteH(p, 1i.*beta./sqrt(2.*mu.*nu)).*(-eta.^(p+m)).*hypergeom([-p -m],[], -1./(eta.^2));
Hm11= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-((beta.^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(m))).*sum(vpa(subs(sm11,p,1:20), guard_digits));
sm22= (((-1i).^l)./factorial(l)).*((nu./(2.*mu)).^(l./2)).*hermiteH(l, -1i.*conj(beta)./sqrt(2.*mu.*nu)).*(-eta.^(l+n)).*hypergeom([-l -n],[], -1./(eta.^2));
Hm22= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-(((conj(beta)).^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(n))).*sum(vpa(subs(sm22,l,1:20), guard_digits));
Hp1=Hp22.*Hp11;
Hm1=Hm22.*Hm11;
Hp(n,m)= (1./(2.*pi)).*(Hp1 + Hm1);
Hm(n,m)= (1./(2.*pi)).*(Hp1 - Hm1);
f11=((abs(c0t)).^2).*Hp(0,0);
f22= c0t.*conj(Ant).*Hm(0,n-1) + conj(c0t).*Ant.*Hm(n-1,0)+ c0t.*conj(Bnt).*Hp(0,n) + conj(c0t).*Bnt.*Hp(n,0);
f33= Ant.*conj(Amt).*Hp(n-1,m-1) + Bnt.*conj(Bmt).*Hp(n,m) + Bnt.*conj(Amt).*Hm(n,m-1) +Ant.*conj(Bmt).*Hm(n-1,m);
sf33= sum(vpa(subs(f33,m,1:20), guard_digits));
f=f11 + sum(vpa(subs(f22,n,1:20), guard_digits)) + sum(vpa(subs(sf33,n,1:20), guard_digits));
vpaintegral(vpaintegral(f, r, [0 10]), theta, [0 2.*pi]) %% 'r' and 'theta' are integration variable
%int(int(f,r,0,10),theta,0,2*pi)

Respuesta aceptada

Ameer Hamza
Ameer Hamza el 2 de Jun. de 2020
If you check at the expression of 'f', you can see it also has 't'. So even if you try to numerically integrate it w.r.t. 'r' and 'theta', the answer will still be symbolic.
Also, I suggest you to use matlabFunction() to convert the symbolic expression into a floating-point function, which is much faster than the symbolic calculations. For example, instead of vpaintegral(), try this
F = matlabFunction(f, 'Vars', [r theta t]);
int_val = integral2(@(r, theta) F(r, theta, 0), 0, 10, 0, 2*pi)
This assumes that t=0 to get a function in terms of r and theta.
  15 comentarios
AVM
AVM el 7 de Jun. de 2020
Thanks for your advice. By the way I have reduced the number of summations involved in the equations ( upto 1-5) and now it is running much faster than previous. Now I need to plot the ''int_val'' w.r.t. '' theta'' in polar plot without using ''int(int())'' command because when I need to plot that w.r.t. ''theta'', I think ''Integral2''will no longer work. So what should I do in this case to get the plot.
I have aready used ''int(int())'' but it is taking extremely long time. Pl help me to solve this problem
AVM
AVM el 7 de Jun. de 2020
@Ameer: Okay the issue is not relevant here. I just asked this question by mistake. It will no longer releted to my case now.

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by