Third Order Boundary Value Problem (BVP) with Boundary Coditions only in Terms of Derivatives
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I need to solve the boundary value problem (related to flow of fluids in conical ducts):
Y''' + 1 - Y'^2 = 0
with all the three BCs bing only on the derivatives of Y (and none on Y itself):
Y'(0)=Y"(inf)=0
Y'(inf)=1
By formulating the problem exactly as suggested here:
dYdX = @(X,Y) [Y(2); Y(3); Y(2).^2-1]; % Differential equation
res = @(ya,yb) [ya(2); yb(3); yb(2)-1];
SolYinit = bvpinit([0 5], [0; 0; 0]);
Fsol = bvp4c(dYdX, res, SolYinit);
X = Fsol.x;
Y = Fsol.y;
I tried to solve the problem, but received the Jacobian error.
Is it possible that the error is generated because the BCs do not contain Y(...), and is there a way around his problem?
4 comentarios
darova
el 8 de Jul. de 2020
I mean this
Y'(0)=Y"(inf)=0
Y'(inf)=1
res = @(ya,yb) [ya(2); yb(3); yb(2)-1];
THere are only derivatives. There should be at least one Y(0) or Y(inf) (starting or final position)
Respuestas (0)
Ver también
Categorías
Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!