Causing a rotating arc to touch another curve and not intersect (collison detection problem)

1 visualización (últimos 30 días)
I want to write a code where an arc stops rotating as soon as it comes in contact with a semi-circle.
I have written a code for the same but my arc dosent touch the circle but it slightly intersects it. Any way of modifying the code so that the arc will touch the semi-circle and not intersect it. I have put rotation of arc inside a while loop by using linspace for changing theta. But at place of touch the theta value exceeds than needed so as a result I get an intersection.
I used polyxpoly() for finding intersection. Condition for while loop is that as long as I have empty array loop continues but as soon as I get a value from polyxpoly() my loop stops.
clc,clear
R = 5; % radius of a circle
r = 10; % radius of arc
aa = 60*pi/180; % arc angle
ap = 0*pi/180; % arc position angle
% defining the semi-circle about the origin
t = linspace(0,pi);
[x,y] = pol2cart(t,R); % circle data
% Shifting circle centre to (3.5,0)
x=x+3.5;
y=y+0;
% defining the arc about the origin
t1 = linspace(0,aa)-aa/2+ap;
[x1,y1] = pol2cart(t1,r); % arc data
% shifting arc-lower-end to (14,0)
delx=14-x1(1); % Finding the x difference between arc-lower-end x-coordinate & 14
dely=0-y1(1); % Finding the y difference between arc-lower-end y-coordinate & 0
x1=x1+delx;
y1=y1+dely;
theta =linspace(0,pi,1000);
i=1;
xc=[];
yc=[];
while isempty(xc)&& isempty(yc)
% create a matrix of these points, which will be useful in future calculations
v = [x1;y1];
% choose a point which will be the center of rotation
x_center = 14;
y_center = 0;
% create a matrix which will be used later in calculations
center = repmat([x_center; y_center], 1, length(x1));
% define a 60 degree counter-clockwise rotation matrix
R = [cos(theta(i)) -sin(theta(i)); sin(theta(i)) cos(theta(i))];
% do the rotation...
s = v - center; % shift points in the plane so that the center of rotation is at the origin
so = R*s; % apply the rotation about the origin
vo = so + center; % shift again so the origin goes back to the desired center of rotation
% this can be done in one line as:
% vo = R*(v - center) + center
% pick out the vectors of rotated x- and y-data
x_rotated = vo(1,:);
y_rotated = vo(2,:);
[xc,yc] = polyxpoly(x_rotated,y_rotated,x,y)
[xc1,yc1] = polyxpoly(x1,y1,x,y)
i=i+1;
end
% make a plot
plot(x,y)
hold on
plot(x1, y1, 'k-', x_rotated, y_rotated, 'r-', x_center, y_center, 'bo');
axis equal
Any suggestions are welcome

Respuestas (0)

Categorías

Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by