Deep Learning LSTM sequenceInputLayer - Data normalization on Test Data?
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Barry
el 13 de Ag. de 2020
Comentada: Barry
el 17 de Ag. de 2020
Hi all,
when using the sequenceInputLayer option "Normalization", "zscore" (for example) will the same normalization be applied on the Testing Data when using the classify or predict function? My understanding is that i always have to use the same normalization on the Test Data as i used on the Training Data. Or am i missing something?
Regards,
Barry
0 comentarios
Respuesta aceptada
Raunak Gupta
el 16 de Ag. de 2020
Hi Barry,
The normalization is applied on every batch of the data that passes through any particular data input layer whether being sequenceInputLayer or imageInputLayer. So, when the training or testing happens it calls a forward function which invokes the batch normalization for that input layer with option like “zscore”, “zerocenter” etc.
No need to worry about saving any parameter about normalization because it varies from batch to batch but be sure that normalization applies to both training and testing data while passing it through the Network.
Más respuestas (0)
Ver también
Categorías
Más información sobre Classification en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!